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ABSTRACT 

 

The Visual Magnitude Satellite Catalogue Project, sponsored by AFSPC/DOYS, issued the first release of 

its composite visual magnitude satellite catalogue in July of this year.  Some 420,000 raw satellite brightness 

observations, from both ground- and space-based platforms, were processed to develop statistical brightness 

characterization and two-parameter brightness models for most of the individual satellites in the deep-space 

catalogue.  This paper discusses the approach and methodology of the effort’s model development and provides an 

assessment of the success and utility of these two-parameter models, concluding that they are adequate for space 

catalogue brightness characterization and optical sensor scheduling. 

 

1.  INTRODUCTION AND DATA DESCRIPTION 

 

 The Visual Magnitude Satellite Catalogue project is a collaborative effort among AFSPC, AFRL, NASA, 

and MIT/LL to combine raw satellite brightness observational data in order to produce a composite, routinely-

updated satellite brightness catalogue.  Because the contributing agencies are independent and conduct continuous 

research, it was agreed that each contributor would furnish raw brightness data to AFSPC and receive in return 

routine updates to the brightness catalogue, but that there would be no cross-distribution of raw data among 

contributing agencies.  The present paper provides a description of the data and processing techniques used to 

establish the initial delivery of this VM catalogue and attempts some preliminary conclusions regarding the 

functional relationship between observed brightness and the phase- and solar-declination-angle of the viewing 

geometry. 

 

 For the assembly of release 1.0 of the catalogue, three data sources were available:  space-based 

observations from the SBV (MSX) satellite and ground-based observations from both the SATA demonstration at 

Edwards AFB, CA and the NASA observing facility at Cloudcroft, NM.  SBV collected observations on both near-

Earth (NE, orbital period less than 225 minutes) and deep-space (DS, orbital period greater than or equal to 225 

minutes) objects but concentrated on DS objects.  SATA and Cloudcroft confined themselves to DS objects, with a 

concentration on geosynchronous objects (orbit class 63, apogee and perigee heights both between 30,000 and 

45,000 km).   

 

 All three collection efforts often collected multiple brightness observations during a single “look” at a 

satellite.  To treat all the observations within a long track as individuals, equal in weight to perhaps a single 

observation from a “look” produced from an entirely different viewing geometry, would, for both averaging and 

curve-fitting, unduly weight those situations in which convenience allowed the collection of long data tracks.  Thus, 

brightness observations that were part of the same track were averaged (in magnitude space) to develop a composite 

observation that represents the entire track.  For SATA and Cloudcroft, whose raw data come accompanied with 

some calibration information, track boundaries were easy to identify by looking for changes in this accompanying 

calibration information.  The form in which the SBV data were supplied did not contain analogous calibration 

information, so this track boundary identification approach could not be used.  An examination of the data revealed 

that observations that appeared to be part of the same viewing session generally were separated in time by less than 

five minutes.  Thus, the decision was made to amalgamate SBV observations on the same object that differed in time 

by less than fifteen minutes (actually, 0.01 of a day, 14.4 minutes).  Because SATA and Cloudcroft use identical 

calibration and observation-processing software, are both ground-based sensors, and together contribute a minority 

of the observations, it was often found convenient to group them together into a single dataset, given the title 

“SACL.”  The data on DS objects available from all three sources for catalogue assembly, in both pre- and post-



  

amalgamated form, are summarized in Table 1, and the portions of the deep-space and geosynchronous objects 

observed are given in Fig 1.  A distinction is drawn between the presence of any data at all and a non-sparse sample 

(here taken to be > 30 observations) from which averaging and curve-fitting can be expected to be more meaningful. 

 

Table 1:  Pre- and post-amalgamation observation counts 

Sensor Data Date Range Pre-Avg 

 Obs Count 

Post-Avg 

Obs Count 

SBV 6/6/96 – 9/30/00 271,772 187,528 

SATA 8/15/99 – 12/31/99 148,062 32,132 

Cloudcroft 3/1/98 – 12/31/99 6,833 5,253 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

 

 

2.  PHOTOMETRIC CALIBRATION AND FRAME-WEIGHTING 

 

 Large variations are often observed in the quality of individual data-frames, so it is desirable to conduct 

averaging and curve-fitting in a weighted manner, with the weighting factors derived from the frame’s photometric 

calibration results.  The canonical four-factor photometric calibration equation is given as:   

 

 V = m0 - k'm - k"Cm + εC + ζ , (1) 

 

in which k' is the atmospheric extinction coefficient, k" the color-dependent atmospheric extinction coefficient, ε the 

color transformation term, and ζ the zero-point offset.  Ideally, all four calibration constants would be computed for 

each frame, allowing a fully normalized result to be obtained; unfortunately, calibration to this fidelity is rarely 

accomplished in actual operations.  The SATA system, which of the three systems supplied the most complete 

calibration results, calculated only the zero-point offset, absorbing all the atmospheric and color dependencies into a 

single term.  However, despite this abbreviated modus operandi, SATA does provide with each observation the 

zero-point offset applied and the zero-point standard deviation resulting from its calculation.  This latter quantity is 

well-suited to serve as a weighting factor.  A typical zero-point standard deviation for SATA data hovered around 

0.3 magnitude, which is a reasonable estimate of the average error of such data.   Because the Cloudcroft 

observations are processed with the same software, these same weights are in principle available; but unfortunately 

they were not explicitly produced as part of the forwarded data reduction.  If they can be produced from archived 

calibration information, then the catalogue averages and curve-fits can be re-generated for improved accuracy.  SBV 

produces as part of its calibration procedures a calibration RMS.  Perhaps this RMS can be used in a similar manner 

to the zero-point offset standard deviation as a weighting factor; whether these RMSs can be recovered for existing 

observations is still under investigation.  For the present catalogue, default weights of 0.3 magnitude were assigned 

to all Cloudcroft and SBV data. 
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 Concerns about the color compatibility among the three observing platforms are very real.  If all three 

platforms were to choose solar-equivalent stars for their photometric calibrations, then the results would be less 

idiosynchratic but not free of all color compatability issues, as the satellites themselves are not solar-colored.  

Unfortunately, even this more modest level of compatability may be difficult to attain, as many frames do not 

contain enough solar-equivalent stars to allow a durable calibration, forcing augmentation with stars with non-

negligible B-V and V-R terms.  The MIT/LL CCD has a known, characterized color bias, and transformation 

equations have been developed to correct for this.  At the present time, it is not known whether sufficient descriptive 

data about the individual SBV calibration frames have been preserved to allow these transformations to be applied 

ex post facto.  Because of these potential incompatibilities, averages and curve-fits for each object have been 

calculated in three ways:  using only SBV data, using only SACL data, and using both data sets mixed together 

(assigned the term “BOTH”).  If users determine that color incompatabilities between the two types of observing 

platforms make the combination of their data unwise, they can elect to use fit-results calculated from only SBV or 

SACL data. 

 

 Previous studies have investigated and attempted to model the onset and severity of satellite specular 

response as solar phase angles approach zero [1,2].  The developed models from these studies show, in magnitude 

space, departure from linear response (with solar phase angle as independent variable) between phase angles of ten 

and fifteen degrees.  Based on this modeling, an argument could be made to eliminate low-phase-angle data from 

any averaging and curve-fitting that is trying to model diffuse response.  Further work is needed to determine how 

much of an effect such an exclusion would have on the present effort; for the initial production of the catalogue, it 

was thought appropriate to maximize the data pool by making all data available for averaging and curve-fitting.  It 

should be pointed out that only 3.4% of the observations were taken at phase angles smaller than 10 degrees and 

only 11.2% for phase angles smaller than 15 degrees, so an extreme biasing of the outcome due to the presence of 

these low-phase-angle data is unlikely. 

 

3.  STATISTICAL CHARACTERIZATION 

 

 Averaging was straightforward.  For each data set a weighted mean, weighted (sampling) standard 

deviation, and unweighted median were calculated, all in magnitude space.  For objects that cannot produce any 

statistically-significant curve fits, the weighted mean is suggested as the best predictor of future brightness, invariant 

with phase and solar declination angle.  It has been presumed that the data sets for such objects follow a normal 

distribution (for sample sizes > 30 obs), but the propriety of this presumption is still to be verified explicitly.  

Although simple weighted means and standard deviations were used in all cases, future catalogue editions will 

probably employ instead a student’s t-distribution for lightly-sampled satellites.  A weighted mean phase and solar 

declination angle are also calculated; these were seen as a way to describe an “average” viewing geometry for the 

object.  While the limitations to this approach are clear enough, it does appear to be the recommended procedure for 

describing the average viewing geometry for asteroids, at least in terms of phase angle [3]. 

 

4.  MODEL DEVELOPMENT 

 

 As has been presumed but perhaps not sufficiently laid out in the preceding discussion, satellite 

illumination is being analyzed in a satellite-centered reference frame, with its resultant brightness considered as a 

function of three possible illumination angles.  Solar phase angle is the angle formed by the sun, the satellite, and the 

observing platform, with the satellite at the vertex.  A phase angle of 0 degrees describes a situation in which the 

light source and the observing platform are directly aligned, producing the greatest observed brightness; as the angle 

moves to 180 degrees, the illumination becomes more oblique until 180 is reached, at which point the part of the 

satellite facing the sensor is not illuminated at all.  For a diffuse sphere, positive and negative phase angles are 

equivalent; for an asymmetric or materially heterogeneous satellite, they can be notably different.  However, since 

none of the three observing platforms used for this version of the catalogue reports a signed phase angle, these 

distinctions could not be considered in catalogue assembly.  Solar declination angle considers the effect of the tilt of 

the earth’s axis on satellite illumination:  geosynchronous satellites will be “bottom-lit” for negative solar 

declination angles and “top-lit” for positive ones.  For a diffuse sphere, solar declination has no effect on resultant 

brightness;  but the effects can be significant for an asymmetric satellite.  A third angle, called the obliquity angle, 

relates to the angle between the unit normal of the satellite’s principal surface and that of the observing sensor’s 

focal plane.  Because spacecraft orientation and rotation rates must be known in order to determine this latter angle 



  

for each observation, it was not used in the present analysis.  For three-axis-stabilized geosynchronous active 

payloads, solar phase and declination angles provide a reasonably complete description of the variables affecting 

resultant brightness; for other DS satellites, or for observations taken from space-based platforms, the geometrical 

issues become more complex.  The research question to be answered here is whether the two parameters of solar 

phase angle and solar declination angle can reasonably be used, for the purposes of satellite catalogue 

characterization and sensor scheduling, to predict brightnesses for these more complex geometries. 

 

 Curve-fitting was thus pursued for all objects in the following way.  First, multiple regression was 

attempted (in magnitude space), with solar phase angle (α) and solar declination angle (δ) as linear regressor 

variables.  The linear variation of brightness with solar phase angle is predicted by the diffuse spherical model and 

has been verified empirically for selected types of objects [4].  A similar canonical behavior is expected for solar 

declination angle variations.  Of course, satellite material properties, spacecraft configuration, and payload mounting 

asymmetries will all cause variation from the theoretical prediction; but the theoretical response seemed a good 

overall model form to use.  The results of this multiple regression for each object were examined to determine if 

they passed a 0.05 significance F-test.  If so, a 0.05 significance t-test was performed against each of the three 

regressor coefficients, with special attention paid to the two variable regressor constants.  If it was determined that 

both variables contributed significantly to the regression, the two-variable fit was the fit-form used for this object.  If 

only one of the two variables was determined to contribute significantly, then the regression was re-run with only 

that one variable as a regressor variable.  If neither variable contributes significantly (indicated initially by an F-test 

failure), then no further curve-fitting is attempted; for such objects, averages are recommended as the most useful 

statistical descriptors. 

 

5.  MODEL EVALUATION 

 

 It is not a difficult task to write software to attempt/accomplish curve-fitting; whether the resultant models 

are ultimately useful as a description of the overall data set is what needs to be determined.  To answer this broader 

question, several sub-questions are prompted.  First, how should the data from these two disparate data sets—space-

based and ground-based—be treated?  Despite the different observing paradigm, calibration approach, and color 

systems, is it still preferable to combine the data from both sources and process them together, thus being able to 

proceed from a larger data pool; or should they remain segregated, producing separate space- and ground-based 

catalogues?  Second, what is the preferred functional form for curve-fitting?  A linear relationship between 

brightness (in magnitude space) and phase angle has been established for certain classes of satellites, but how widely 

applicable is this relationship among different orbits and spacecraft?  Separately, rather little has been done to 

explore the form and tenacity of the relationship between brightness and solar declination angle; can certain basic 

aspects of this relationship be established, at the least as a foundation for further enquiry?  Finally, the ability of a 

curve-fit to pass significance thresholds is no guarantee of its being widely representative; do the statistically-

significant fit results possess enough representational ability to give them real predictive value to determine optimal 

scheduling of sensor resources? 

 

 The first step to answering these questions is to examine comparatively how well each data type responded 

to curve-fitting in terms of producing statistically-significant curve-fits.  Fig. 2 shows how the three data types—

SBV alone, SACL alone, and SBV and SACL combined (BOTH)—fared for both DS generally and GEO orbits 

specifically, with both more and fewer than thirty observations.  The y-axis is the percent of satellites with data in 

the relevant orbital regime (DS or GEO) for which a curve-fit against α, δ, or α + δ was statistically significant.  It 

quickly becomes apparent that requiring a thirty-observation minimum renders a significant improvement in curve-

fitting success, although this improvement is less marked in GEO, where the data density is higher and fewer 

undersampled cases exist.  In the GEO region, the combined data case is able successfully to fit slightly more 

satellites than that for SBV alone, but it is interesting that in the well-sampled DS case this is not true—SBV alone 

actually does slightly better than the BOTH case.  Still, the differences are not significant enough either to 

recommend or prohibit the combination of data from the two.  As would be expected, fitting is improved, in many 

cases significantly, by requiring a thirty-sample minimum; the subsequent discussion of curve-fitting successes and 

failures is limited to these more plentifully-endowed cases. 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

 

 Fig. 3 shows the successes of different fitting combinations, called here “fit-states,” as a function of data 

group.  Fit-state “No” indicates that no fit was possible, α indicates that a fit against only solar angle was successful, 

δ indicates that a fit against only solar declination angle was successful, and α + δ indicates that a fit including both 

α and δ as regressor variables was successful.   Any given satellite can be placed in only one of these bins, with the 

exception of  “Tot”, which represents all successful fits taken together.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

 

 These results yield several interesting features and confirm certain suppositions.  First, because SBV takes 

observations on geosynchronous satellites from many more viewing geometries than are possible for a ground-based 

sensor, one would expect observed brighnesses to correlate more strongly with solar phase angle than with solar 

declination angle; and in fact the results bear this out:  30% of the cases produce a statistically-significant fit with α 

alone, as opposed to ca. 3% with δ alone.  It did somewhat exceed expectations, however, to see so large a number 
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of cases (53%) fit to both α and δ, showing that while α may be the predominant predictor, δ should not be 

neglected, as it still contributes significantly to the majority of fits.  Second, for the ground-based fits derived from 

SACL observations, δ becomes the predictor of choice, outperforming α for single-parameter fits by at least a factor 

of three.  This comes as something of a surprise, as one might have expected a more even apportionment of 

influence between α and δ; but in the end, as with SBV, using both α and δ as regressor variables was the most 

successful strategy overall.  However, one must be cautious in forming conclusions about the relative influence of α 

and δ on SACL observations because of systematic relationships between the two parameters:  in order to maximize 

the probability of acquisition, the observing α and δ are not chosen randomly and independently but in a coupled 

manner expected to produce the brightest return.  Not necessarily the best, but certainly the simplest, defense against 

the colinearity this phenomenon can introduce is to combine these SACL data with the SBV data, which do not 

suffer from this systematic effect, to form a larger, heteronomous data pool.  Indeed, it can be seen that the 

combined data pool ( “BOTH” in Fig. 3) fares better vis-à-vis fit success, in both DS generally and GEO 

specifically, than the SACL data; in comparison to the SBV data, a slight penalty is exacted in DS generally but a 

slight improvement in GEO specifically.  Thus, in terms of fit success, there is no obvious penalty to using the 

combined data set, and a particular advantage if SACL colinearity can be addressed.  What remains to be seen is 

whether there is any meaningful discrepancy in the quality of the fits themselves. 

 

 Fig. 4 shows the r
2
 and standard error results for fits against α, δ, and α + δ.  Because of space limitations, 

only the results for GEO are shown here; but the results for the broader DS case are similar in form.  The purpose of 

these charts is to show quality of fit comparatively for each fit-type (for example, how do the fits against α only 

compare in quality among the SBV, SACL, and combined data sets, in terms of both r
2
 and SEE?); to show 

comparative quality among the α, δ, and α + δ cases; and to show absolutely the quality of fits obtained by this 

technique.  The data are graphed as cumulative percentile charts in order to normalize for the different numbers of 

objects fit by each fit-type.   

 
 The left-hand graphs in Fig. 4 show the relative goodness-of-fit among the three data pools in each fit-state 

and among the three fit-states, and a correlation is seen immediately between the number of satellites successfully fit 

to a given fit-state from a given data pool and the quality of that fit.  For example, in the top-left graph, which plots 

 r
2
 for α alone as the regressor variable, it is clear that the fits obtained from SACL data are not nearly so good as 

those obtained from the SBV and BOTH data pools; and in fact far fewer statistically-significant fits against α alone 

were produced (as was shown in Fig. 3).  When δ is the lone regressor variable, the situation is reversed, as shown in 

the left-middle graph; better fit quality is observed for the SACL data pool than for the SBV and BOTH pools, and 

indeed far more satellites from the SACL pool were successfully fit to δ alone than from the SBV or BOTH pools.  

More homogeneity is present in the α + δ case; the results for the BOTH pool reside between those for the SBV and 

SACL.   

 

 Table 2 attempts to summarize these r
2
 results; it should be read as shown in the following example:  “70% 

of the fits of the SBV GEO data set against α alone achieved an r
2
 better than or equal to 0.26.”   

 
Table 2:  GEO regression results by percentile and regressor variable 

Regressor Data 50
th

 Percentile 70
th

 Percentile 90
th

 Percentile 

Variables Source r
2
 r r

2
 r r

2
 r 

α SBV 0.39 0.62 0.26 0.51 0.11 0.34 

 SACL 0.09 0.30 0.07 0.26 0.02 0.16 

 BOTH 0.36 0.60 0.22 0.47 0.08 0.29 

δ SBV 0.10 0.32 0.08 0.28 0.03 0.18 

 SACL 0.29 0.53 0.17 0.41 0.05 0.22 

 BOTH 0.10 0.32 0.08 0.28 0.03 0.17 

α + δ SBV 0.38 0.62 0.24 0.49 0.09 0.30 

 SACL 0.24 0.49 0.16 0.40 0.08 0.29 

 BOTH 0.28 0.53 0.20 0.44 0.08 0.28 

 
 

 



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 (diamonds denote SBV, squares SACL and circles BOTH) 

 

 

Looking at the results comparatively, the combination of data sets (the BOTH category) produces an r
2
 between that 

for SBV and SACL, with SBV leading in some cases and SACL in others.  In some cases the r
2
 difference between 

the combined data pool and the better of the two individual data pools is notable (e.g., δ as regressor, 50
th

 percentile, 

SACL’s 0.29 compared to BOTH’s 0.10).  However, the differences are not substantial; and when one considers the 

broader application of the BOTH data set and the mitigation of colinearity, it still can be advanced as the set of 

results appropriate to most catalogue users. 
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 Regarding the association between absolute r
2
 values and the conclusion that the fit is adequate or 

inadequate, there seems to be no consensus in engineering applications.  Within the social sciences, however, there 

is more of an established framework for such an association, although it is based on the Pearson correlation 

coefficient (r) rather than its square (r
2
).  The following mapping of heuristic quality-of-fit descriptions to Pearson 

values has been proposed [5]: 

 

 
Table 3:  Mapping among r

2 
value, Pearson value, and heuristic fit assessment 

Heuristic Description Pearson Value r
2
 Equivalent 

Slight, almost negligible relationship < .20 < .04 

Low correlation; definite but small relationship .20 - .40 .04 - .16 

Moderate correlation; substantial relationship .40 - .70 .16 - .49 

High correlation; marked relationship .70 - .90 .49 - .81 

Very high correlation; very dependable relationship > .90 > .81 

  
 
For the combined data pool, the results for all three regressor combinations at the 50

th
 percentile fall within (or are at 

the boundary of) the “substantial relationship” case; and at the 70
th

 percentile, all but the lightly-populated “δ-alone” 

case still achieve this.  These statistically-significant fits seem to be of enough stature to recommend their use as 

preferable to the simple averaging of all the data for a satellite. 

 

There is in general less variation among the different data pools regarding standard errors (SEE) than was 

observed with r
2
.  For the α-alone and δ-alone cases, SEE’s generated from the three data pools remain quite close 

together until the 90
th

 percentile is reached; for the  α + δ case, SACL lags the other two cases by about half a 

magnitude.  Table 4 summarizes these SEE results for percentile ranks of interest: 
 

 
Table 4:  SEE results by percentile, data pool, and regressor variables 

Regressor 

Variables 

Data 

Source 

50
th

  

Percentile 

70
th

  

Percentile 

90
th

  

Percentile 

None SBV 0.81 0.92 1.06 

 SACL 0.99 1.14 1.66 

 BOTH 0.94 1.08 1.38 

α SBV 0.59 0.71 0.85 

 SACL 0.55 0.60 1.01 

 BOTH 0.66 0.75 0.87 

δ SBV 0.80 0.85 0.96 

 SACL 0.92 1.10 1.50 

 BOTH 0.92 1.09 1.37 

α + δ SBV 0.55 0.68 0.93 

 SACL 0.86 1.04 1.29 

 BOTH 0.61 0.72 1.00 

 
Again, the δ-alone case produces the least satisfactory results; but the better-populated cases of α-alone and α + δ 

produce, at the 50
th

 percentile, standard errors slightly over half a magnitude, working their way up to a full 

magnitude by the 90
th

 percentile.  Such results are hardly so satisfactory that one can declare victory and prescind 

from any further refinements in the fit-model; indeed, model refinement will be among the visual magnitude satellite 

catalogue project’s chief activities as the project proceeds.  However, the fit-results for the present version of the 

catalogue and its associated models are strong enough to recommend these models for space catalogue brightness 

characterization and optical sensor scheduling. 
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