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The most complex and forbidding aspect of Space Surveillance Network performance 
simulations is the calculation of state vector accuracy, as it requires the direct simulation 
and noising of both sensor observations and the orbit determination process.  A procedure is 
here described for constructing expected state vector accuracy curves as a function of sensor 
tracking type and density, thus obviating the need for the explicit simulation of sensor 
observations and orbit determination.  Building on the results of earlier studies, twenty-five 
million operational precision state vectors were grouped by orbit type and sensor tracking 
mix, accuracy values for each vector were determined for time periods of interest after 
epoch, and curve-fits of vector accuracy versus tracking density were executed and analyzed.  
The results identify a preferred “accuracy decay” functional form, develop a fitting 
methodology, and establish the general level of fidelity of the overall procedure, which is not 
of a level to recommend it for the evaluation of individual satellites but yet quite serviceable 
for establishing the aggregate accuracy of a catalogue of objects. 

I.  Introduction 
ll modeling and simulation efforts encounter a tension between fidelity and ease of use:  increasing the explicit 
simulation improves fidelity but increases complexity and run-time; using a more parameterized approach 

gains simplicity and accessibility but reduces the predictive value of the simulation.  The situation is certainly no 
different with efforts to simulate the operation of the Space Surveillance Network (SSN), the collection of sensors 
operated by the US military to detect and track artificial earth satellites.  The longstanding Space Surveillance 
Network Analysis Model, operated by Air Force Space Command (AFSPC), opted for fidelity over simplicity:  it 
executes full simulation of sensor observations (complete with sensor-specific noise models) and explicit orbit 
determination and updates.  It collects the wages of high-fidelity in being certified as an operational model (the 
match to real-world operations is greater than 90%), but at the considerable complications of required parallel 
processing, huge datasets, and the instabilities and vicissitudes of the orbit determination process. 

A 

 When the Space and Missile Center (SMC) commissioned the development of a simulation tool for the purposes 
of force structure planning and investment decision support, a broader range of the fidelity-simplicity trade-space 
was available.  This type of decision aid required only a 70-80% match to real-world operations, both because of the 
tool’s purpose and because of the imprecision with which the performance of proposed future systems is usually 
known.  As execution speed and model flexibility are important features of planning tools, there was an impetus to 
simplify the operation of this model as much as possible.  One area that appeared to bear investigation was whether 
a parameterized methodology for estimating state vector accuracy could adequately replace the explicit simulation 
of sensor observations and orbit updates.   
 

II.  Proof-of-Concept:  “SSNO Study” 
 The parameterization of state vector accuracy determinations was initially seen as possible because of a similar, 
although more limited, study effort performed by the Omitron Corporation in 20022 and 20033

                                                

.  The Space 
Surveillance Network Optimization (SSNO) study was commissioned to determine what level of satellite tracking 
would be required from the assembled SSN in order to obtain desired levels of vector accuracy; this was 
accomplished by dividing the space catalogue into appropriate orbit regimes and for each regime establishing a 
functional relationship between vector accuracy and tracking density.  The manner in which each of these was 
accomplished (i.e., the division of the space catalogue and the form and success of the functional relationship) 
provided very helpful points of departure for the present investigation and are thus described in some detail here. 
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A.  Satellite Taxonomy 
 Several taxonomic schemes have been assembled over the years to divide the orbital population into groups that 
represented similar ease or difficulty vis-à-vis orbit maintenance; typically, these have focused on the apogee and 
perigee heights of the orbit; the “orbit class” scheme in use during much of the 1990’s, for example, established 65 
bins based on apogee and perigee height.  This methodology 
appropriately captures the orbital maintenance differences 
due to atmospheric density, but it neglects the similarly 
important drag-related differences due to satellite frontal area 
properties.  Since the actual physical properties of the satellite 
are rarely known a priori, a mechanism is needed to account 
for the total retarding force of the atmospheric drag.  Omitron 
proposed using as a discriminator the instantaneous energy 
dissipation rate (EDR) of a particular satellite-orbit pair, 
given a formal definition of  

Table 1.  Energy Dissipation Rate (EDR) bins.  
 EDR 

Bin 
Lower 
W/kg 
Value 

Upper 
W/kg 
Value 

% of 
Catalogue 

(May 2007) 
0 0 0 15.5 
1 0+ 0.0006 72.7 
2 0.0006 0.0010 2.6 
3 0.0010 0.0015 1.5 
4 0.0015 0.0020 0.8  

 , (1) 5 0.002VAtEDR D

rr
•−=)( 0 0.0030 1.2 

6 0.0030 0.0060 2.0 
 
in which AD is the inertial drag acceleration vector and V is 
the inertial velocity vector.  This quantity (in watts/kg) 
represents the amount of energy being removed from the orbit 
due to atmospheric drag (or occasionally being brought to the 
orbit via the solar wind; objects with high surface-area-to-
mass ratios can often gain significant orbital energy this way).  
A single numerical value for EDR for a given vector update is 
an averaged value calculated over the orbit determination 
interval.  The SSNO study divided the orbital population into 
eleven EDR bins, and these divisions have proven a very 
useful categorical approach.  Table 1 shows the precise definitions of the EDR bins and how the space catalogue 
(May 2007) divided itself among them.  Because of the relatively small populations of EDR bins 2-10, it is often 
convenient to combine them into three supergroups:  bins 2-4, 5-7, and 8-10.  The definitions and catalogue 
composition of these three supergroups are given at the bottom of the table.  

7 0.0060 0.0090 1.0 
8 0.0090 0.0150 0.8 
9 0.0150 0.0500 0.8 

10 0.0500 0.0500+ 1.1 
    

2-4 0.0006 0.0020 4.9 
5-7 0.0020 0.0090 4.2 

8-10 0.0090 0.0500+ 2.7 

 It is clear that 
the boundaries of 
these EDR bins in 
many places cross 
over the more 
traditional orbital 
region borders, 
such as those for 
low-Earth orbit 
(LEO), high-
eccentricity orbit 
(HEO), and 
geosynchronous 
orbit (GEO).  For 
example, objects in 
all three of those categories could belong to an EDR bin 0; or an EDR bin 6 satellites could be either LEO or HEO.  
Because tracking phenomenology and mission requirements differ among the traditional orbital regions, it is still 
useful to continue to divide satellites by these criteria as well.  Table 2 outlines the combined division scheme used 
for the present analysis. 

Table 2.  Orbit regime and EDR division scheme. 

 EDR 
Bin 

LEO 
Period < 225 

min 
 

HEO 
Period > 225 min 

e > 0.25 

GEO 
Period > 1300 

and < 1800 min 
Inc < 15 deg 

e < 0.25 

MEO 
Not LEO, HEO, 

or GEO 

0     
1     

2-4     
5-7     

8-10     
 

 
 
 

 



 

B.  Accuracy versus Tracking Density Functional Form 
 The Omitron SSNO experiment consisted of obtaining observation datasets for selected objects, creating a set of 
thinned observational datasets that represent a variety of tracking densities, executing batch differential corrections 
(DCs) from each of these variously thinned datasets, calculating the RMS error for each such DC, plotting the 
results, and attempting a curve fit of these results.  A variety of different orbit regimes were investigated (although 
not precisely the same divisions that were 
used for the current project), allowing some 
general conclusions about this approach to be 
drawn.  Figure 1, taken from the first of the 
Omitron study reports, is a typical example 
of the form and behavior of the data.  On this 
graph is shown several different accuracy 
(error) versus tracking density curves, each 
generated using a different orbit 
determination interval. 
 The first item of note is the overall 
functional form of the response, which 
conforms nicely to an exponential decay 
function.  Omitron chose to fit such response 
to the form y=a+bxc.  Whether this is the 
preferred specific expression of the 
exponential decay functional form is a 
question explored in the present analysis, but 
one can see that the fit (at least in the present 
example) is at least visually satisfying.  The 
second noteworthy item is the non-
monotonic nature of the accuracy error 
response.  The exponential decay seems to bisect the oscillatory behavior, but the fact remains that there is 
significant movement about this apparent decaying center.  Imperfect response is, of course, a necessary 
consequence of using real rather than fabricated datasets, and one should be prepared to see this type of behavior all 
the more grandly in a framework that includes even more empirical elements.  Finally, it should be noted that the 
range of tracking densities for the group of satellites shown in the above graph, and in fact for all of the groups 
examined, is not particularly broad; while it may not be common to exceed an average density of 100 tracks/day or 
so, it is certainly common to encounter situations in which the density falls well below 1 track/day.  For the purposes 
of studying the effects of reducing the number of tracks collected and thus pushing more and more satellites into 
such a low-tracking-density region, it is very important that this portion of the curve be accurately represented.  
Perhaps one of the principal benefits of revisiting the SSNO study would be to extend these curves to significantly 
lower tracking densities. 

Figure 1.  Example accuracy curve set and fit function 
(from Omitron report) 

 
C.  SSNO Study Limitations for Present Application 
 The SSNO study proof-of-concept certainly suggests a simple parameterized approach:  if one can determine 
the amount of expected tracking that a family of sensor systems can provide to a given satellite, then using the 
accuracy-versus-density relationship one can determine immediately the expected accuracy of the vector that would 
have resulted had simulated observations been generated and an orbit update executed.  Such an approach seems 
highly desirable for the present simulation application, so the temptation is to use the SSNO study results directly as 
the basis for simulation accuracy determination.  Is there any reason why the present SSNO results are not suitable 
for this purpose? 
 One reason has already been mentioned:  the SSNO study datasets did not explore the region of low tracking 
densities, a region that is required for simulation applications that propose to reduce the number of sensors and thus 
the amount of available tracking.  There are other limitations as well, principal among them the fact that the SSNO 
study prescinded from considering the full range of tracking-type mixes that the present SSN supplies.    Range-
enabled tracks are provided by most SSN radars, angles-only tracks are provided by the optical sensors, and angles-
only tracks with a notably degraded quality (attributed in part to a necessary but unfortunate co-ordinate system 
transformation) from the SSN’s single interferometer, the NAVSPASUR fence.  Obviously, it is not sufficient to 
consider tracking density as the only independent variable; the particular type of track (radar, optical, interferometer) 
and/or mix of tracks will influence the result, at times only subtly, at other times substantially.  The SSNO study did 

 



 

not consider the interferometer observations in a separable way (an appropriate decision, given the study’s original 
purpose, but problematic for the present simulation application) and addressed only a subset of the mix possibilities 
with angles-only observations.  Additionally, the SSNO study did not address all eleven EDR bins within the HEO 
orbit regime.  Finally, the SSNO study calculated its accuracy results in terms of fit RMS, an approach that is 
meaningful and internally consistent but unfortunately at variance with the approach used to define official accuracy 
requirements; while the RMS methodology can be used to make relative distinctions among different families of 
sensor systems, it is not helpful in comparing response to official requirements thresholds.  For all of these reasons, 
a re-execution of the SSNO curve-set is desirable. 
 

III.  “Empirical” Vector Accuracy Data using SuperCODAC 
 The SSNO study executed controlled differential corrections from carefully-selected datasets; this was certainly 
a reasonable experimental procedure, but it naturally limited the number of satellites that could be considered 
(around 100) and, therefore, any broad sampling of some of the more obscure orbit types.  A natural counterproposal 
to the SSNO approach is the data mining of actual operational vectors, the data densities that produced them, and 
their accuracies; while this introduces the messiness of real operational data (and the human and processing errors 
that it invariably contains), it greatly increases the sample size and does reflect the more typical operational, rather 
than the merely experimental, situation.  The following paragraphs describe the operational data available for 
capture and the methods to be used to transform it into a dataset appropriate to regenerating a set of SSNO-like 
curves. 
 For the last decade or so, special perturbations (precision) differential corrections have been routinely 
performed on the entire space catalogue; and while the original emphasis was to improve orbit accuracy for objects 
in the manned-flight regime, the mandate has broadened to improve the vector accuracy for all orbit types.  The 
update method of choice has remained a batch least-squares approach, which has included both the High-Accuracy 
Satellite Drag Model (HASDM) atmospheric drag modeling4 and segmented drag solutions, in which instead of 
solving for a global ballistic coefficient for the entire fit-span, the interval is segmented and a drag coefficient 
determined for each segment, thus improving the overall solution.  Additionally, the operational corrections employ 
a dynamically-adjusting orbit determination interval (ODI), which is the period over which sensor observation data 
will be chosen.  The approach, called the Dynamic LUPI Algorithm (DLA), attempts to adjudicate the tension 
between desiring a longer orbit determination interval to reduce errors in the orbit determination process (due to low 
data rates) and desiring a shorter orbit determination interval to reduce errors due to inadequate drag modeling.  This 
particular approach is described in the 2003 SSNO report, previously cited.  What this does mean is that the orbit 
determination interval cannot be calculated, as it is with the GP theories, as a simple function of satellite orbital 
parameters; one must know both the orbital parameters and the tracking history and replay the DLA iterative 
algorithm. 
 Fortunately, the automated record-keeping that is part of the DC process allows one to determine which sensor 
observations were included in the orbit determination process that produced each vector, so the tracking mix 
(amounts of range-enabled, angles-only, and interferometer tracking) that produced each vector is known.  Rather 
than tabulate individual sensor observations, which are often products of essentially arbitrary filter settings and 
heavily correlated one with another, it makes more sense to consider the individual sensor track—the set of 
observations that results from one data-taking session—as the individual unit, the quantity and quality of which 
drives vector accuracy.  For NE satellites tracked by ground sensors, a track consists of all of the observations taken 
during the viable “pass” of the satellite over the sensor; for orbits where sensor coverage of a satellite can endure for 
long periods, such as for the tracking of deep-space satellites and space-based tracking of many satellites, a track has 
been defined as the satellite position data taken with less than twenty minutes’ separation from any other data points.  
From these definitions, it can be determined the number of tracks of each tracking type (range, angles-only, 
interferometry) that produced each vector. 
 The missing datum, then, is the accuracy (error) of each produced vector; if that were known, then there would 
be a large dataset that linked, by satellite orbit type, the input tracking density and the resultant accuracy.  
Fortunately, a feature of the current operational system is an accuracy evaluation of every SP vector produced, with 
a methodology similar to that used for calibration reference orbit construction.  The approach is described more 
completely in a separate conference paper,5 but an abbreviated summary can be given here. 
 A common method of reference orbit construction involves the linking together of pieces of ephemeris taken 
from the fit-spans of moving-window DCs.  If the construction process is set up properly, these fit-spans do not 
share observational data and are therefore (essentially) statistically independent; and it can be shown that in this case 
the variance of the reference ephemeris abutment errors (which can be measured) is twice the variance of the actual 
ephemeris error.  When building a small number of reference orbits, the situation can be massaged to get the DC fit-

 



 

spans to align properly so that the ephemeris-pieces can be stitched together easily.  However, when reference orbits 
are attempted on an entire catalogue of satellites, in which operational requirements require updates when new 
observations are available (in eight-hour batch intervals presently), arranging for the ideal fit-span definitions simply 
becomes impossible; but if some overlap of fit-spans is allowed, a reasonable reference orbit can still be constructed 
despite the introduction of a certain amount of correlation between ephemeris pieces.  In fact, if one can achieve a 
50% overlap between fit-spans, the factor of two difference between the variance of the abutment errors and the 
variance of the actual ephemeris error disappears, allowing a direct relationship.  The “adjudicated settlement” for 
the operational implementation was to take ephemeris pieces from as close to the middle of the fit-span as possible, 
try for situations that give approximately 50% overlap, and use pieces from intervening updates if necessary.  This 
will allow for the efficient creation of a reference orbit for every object.  While clearly not as reliable as satellite 
laser-ranging (SLR) reference orbits, by some measures they compare favorably:  for a collection of eight calibration 
satellites, epoch accuracies of produced vectors differed, on average, by only 8.3 m when assessed against the 
constructed reference orbit versus the SLR reference orbit; at the 18-hour prediction point, the mean difference was 
5.5 m. 
 If each satellite has in place an acceptable reference orbit, then accuracy (error) information at time points of 
interest are calculated easily:  the vector under evaluation is propagated to the closest ephemeris point to the time of 
interest (for the current analysis epoch, 18 hours after epoch, and 72 hours after epoch) and a position comparison 
made; the vector magnitude of this position difference is the accuracy datum used for the present analysis.  At this 
point, it would seem, all the pieces are in place:  each vector update for each satellite has associated with it the 
number of tracks that produced it and the type of each track (range, angles-only, interferometry) and an accuracy 
evaluation; this is a very large dataset (about 25 million vectors for the two-year period of 2006 and 2007) that 
should be able to be mined in a straightforward way to produce a set of SSNO-like accuracy curves.   
 

III.  Accuracy Curve-Fitting 
 An initial approach to establish accuracy-tracking relationships attempted two-dimensional curve-fits, in which 
the resultant accuracy was presumed to be a double-exponential decay as a function of the range-enabled and angles-

only tracks per 
LUPI.  

Unfortunately, these 
surface fits proved 
unwieldy to evaluate 
and visualize, and in 
any case do not save 
difficulty when 
interferometry tracks 
are included, as four-
dimensional fitting 
becomes truly 
unsustainable.  From 
this experience, it 
was decided that the 
fit-space should be 
constrained to a 
single independent 
variable, which 
would be the number 
of tracks per ODI.  
Because of the 
different track-mix 
possibilities, certain 
canonical mix-types 

would need to be defined.  Table 3 outlines the tracking mix types used for the current analysis. 

Table 3.  Tracking mix types and definitions

Tracking Mix Type Description 
(1)  Radar only Most satellites in LEO orbits receive a mixture of radar and 

interferometer tracks; most deep-space satellites receive a 
mixture of radar and optical tracks.  This category addresses 
the case in which only radar tracks are obtained. 

(2)  Radar and others 
(LEO only) 

As stated above, most LEO orbits receive radar and 
interferometer tracks; so this category is intended to 
represent the typical LEO situation.  There is a small 
number of optical tracks that also appear here (generally 
from space-based assets), and these are included as well. 

(3)  Optical only (DS 
only) 

Only angles-only data from optical sensors is included.  

(4)  Interferometer 
(NAVSPASUR) only 

The SSN contains currently one interferometer radar (the 
NAVSPASUR fence).  There are cases in which satellites 
are maintained only with data from this asset; and these 
cases are considered here. 

(5)  Radar and optical 
only (DS only) 

DS objects maintained with both radar and optical (but not 
NAVSPASUR) data—the typical DS case 

(6)  Radar, optical, and 
NAVSPASUR only 

DS objects that receive all three tracking types 

 

 This is a good time to consolidate and expand upon all the divisions of data discussed so far in this paper, as it is 
the superimposition of all of these divisions that will create the individual datasets to be fit.  The first division is by 
orbital regime, as outlined in Table 2.  There are five EDR bin divisions for LEO, five for HEO, one for GEO, and 
one for MEO, giving a total of twelve groupings for orbit regime.  Next is the division by tracking mixes, as given in 

 



 

Table 3.  Three tracking mixes apply for LEO (mixes 1, 2, and 4); five mixes apply to the other orbit regimes 
(mixes, 1, 3, 4, 5, and 6; GEO has only 1, 3 and 5).  The nested application of these two divisions produces 49 
dataset divisions.  Each of these needs to be further subdivided into time-since-epoch groups, as the accuracy data 
were analyzed for epoch, 18 hours after epoch, and 72 hours after epoch (making 147 datasets total).  Finally, one 
must determine what statistical accuracy value should be selected to represent the vector accuracy for a given 
tracking density.  Because Vmag accuracy is an asymmetric, right-skewed distribution that does not precisely follow 
any of the canonical distribution types (largely due to the fact that the individual component errors do not in fact 
follow a Gaussian distribution), it is preferable to use a non-parametric characterization technique, such as 
percentiles.  Each set is thus evaluated with 50th and 95th percentile accuracy values.  One thus reaches a grand total 
of 294 accuracy curves to attempt to fit. 
 It was additionally required that any given dataset have at least fifteen data points in order to attempt a 
meaningful fit.  This criterion excluded sixteen datasets from the fitting process, leaving a grand total of 278 to be fit 
and subsequently evaluated. 
 

IV.  Results 
A.  Motivation for and details of exponential-decay fitting 
 The Omitron Corporation SSNO study, discussed previously in this paper, established as proof-of-concept the 
exponential decay functional form of the relationship between vector error and tracking density.  The precise 
functional form that Omitron proposed is the following: 
 
  ; (2) cbxay +=
 
and this seems a logical form with which to begin, although it seems also appropriate to try the similar (the first few 
terms of the Taylor series expansion are the same) but competing form 
 
  , (3) cxbeay +=
 
as it may have preferable curvature and asymptotic properties.   
 One approach to determining quickly whether the Omitron situation is indeed a comparandum to the accuracy-
density relationship in the empirical data is to investigate the Pearson correlation coefficient in log space; if a large 
negative correlation is observed, one can expect the 
two situations to be comparable.  A CDF of this value 
is given in Fig. 2, and it is clear that the inverse 
correlation is quite strong, as expected:  50% of the 
values are smaller than -0.8 and 95% are smaller than 
-0.4.  So an exponential functional form seems quite 
appropriate to the empirical data. 
  With datasets of this form, one faces a difficulty 
in selecting the particular curve-fitting approach to 
use.  Both proposed functional forms are non-linear in 
the independent variable, so a non-iterative solution 
will not exist.  Nonlinear least-squares certainly 
suggests itself as the logical candidate, as it will 
properly represent the expected peak at the left side of 
the curve (the high accuracy errors corresponding to 
low tracking density).  However, if the data are at all 
noisy, the miscarriages that least-squares fitting can 
exact are all too well known.  One is tempted, 
therefore, to attempt a robust fitting technique in order 
to reduce the effects of outliers and other data noise; 
what was not known is whether such a technique 
would deweight the curve’s left side that it will no longer be representative of the accuracy function, but an attempt 
was certainly warranted.  The robust technique selected is the iteratively-reweighted bisquare approach, in which the 
data are iteratively reweighted according to the weighting function 
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Figure 2.  CDF plot of Pearson correlation 
coefficient (in log space). 
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in which wB is the vector of weights, e is the residual error, and k is a tuning constant.  The functional forms in Eqs. 
(2) and (3) were thus both fitted with a straightforward nonlinear least squares approach (Levenberg-Marquant) in 
addition to this robust technique.   
 After an initial trial run with this approach, it became obvious that many datasets possessed long tails that 
decayed slowly; and the fits to the functional forms given in Eqs. (2) and (3) produced asymptotes that settled at too 
large a value.  A linear term was thus added to the functional forms to allow the fitted response to follow the actual 
decay more closely; the functional form is thus 
 
   (5) ddx cxbxaycebxay ++=++= ;
 
Of course, allowing this kind of decay creates the possibility that the fitted form might eventually assume negative 
accuracy values; and this potential problem was addressed in the following way.  Predicted accuracy values for 
tracking densities larger than any used in the fit-span were assigned the fitted value for the end of the fit-span; this 
eliminates the possibility of a negative value arising from a predictive use of the fitted curve.  If negative fitted 
values were encountered within the fit-span itself, the root of the fitted equation was determined, the median value 
of the ten data points preceding the zero was calculated, and the fitted curve was forced to this constant value at all 
points after which it naturally occurred.  This latter approach is somewhat arbitrary in its construction but 
nonetheless has proven quite serviceable. 
 
B.  Fit Quality 
 It is somewhat premature to introduce fit quality at this point, since it would be more naturally discussed after 
all the details of the fit-execution process have been addressed.  However, this issue is best treated by introducing 
sample graphs that demonstrate different fit qualities; and showing these graphs at this point will help to anchor in 
something concrete all of the preceding discussion, which by taking place apart from specific examples has 
remained somewhat abstract.  
 The fitting software produced plots that show the actual data as circles and the four fitted functions as different-
colored lines.  If all of the fit approaches used a least-squares minimization as the cost function, then a single 
parameter, such as the standard error of the estimate or an RMS summary, could be used as at least a preliminary 
indication of the relative success of the four fit types.  Of course, the virtue of the robust techniques is that they do 
not use a least-squares minimization, so it is certain that their resultant RMS will be worse than that for a least-
squares approach.  As a replacement, two percentile points—the 50th and the 90th—of the absolute value of the 
residual set have been chosen.  The 50th percentile level gives a sense of the overall behavior of the fit and the 90th 
percentile insight into what range the grosser 
residuals might occupy.  With larger datasets, to be 
sure, one could encounter several very large 
residuals not reflected by either of these statistics, 
and an overall favorable residual picture does not 
guarantee a desirable fit.  As such, the assignment of 
the best fit for each dataset was ultimately made 
subjectively, by eye. 
 This visual examination process assigned a 
single best functional form, a runner-up functional 
form, and an overall quality-of-fit ranking.  The best 
fit was selected on the basis of how well it was able 
to represent the peaked, early part of the response 
(the more important one for the present application, 
as the error increase caused by any tracking decrease 
below the visible “knee” in the curve needed to be 
accurately reflected) and not badly misrepresent the 
tail of the dataset, where there was comparatively 
little error variation.  That said, there were situations 
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Figure 4.  Distribution of fit quality.  Most of the fits 
merit either a 3 or 2, with the 1 and 4 ratings composing 
less than 10% of all of fits. 

 



 

in which much of the “peak” of the early part of the response was caused by a single point, and it was difficult to 
have an abiding confidence in that single point; so fits that did not reach or represent that point completely but 
provided a compelling fit to the rest of the data could emerge as the preferred choice.  The 50th and 95th percentile 
residual statistics were consulted as part of the selection but were not determinative; the one role that they fulfilled 
consistently was to guide the choice between two equally visually satisfying fits. 
 

 
 Fit quality was evaluated on a scale of 1 to 4, 4 being high.  The assessment is naturally subjective, although it 
of course correlates largely with the absolute residual percentile figures; and it means that at least one of the four fit 
types provided a fit of the specified quality.  Figure 3 gives an example of a dataset corresponding to each of the 
four fit qualities.  A quality level of 4 indicates a fit that is good essentially throughout.  A level of 3 indicates 
acceptable deviation in either the peak section or the tail.  In the Fig. 3 example (upper right), the aqua line is an 
acceptable deviation in the peak section, whereas the purple one is not.  A level of 2 indicates a noisy but tolerable 
fit in both the peak and the tail regions.  A level of 1 indicates a situation that really cannot be said to fit either of the 
functional forms.  Figure 4 (previous page) provides the overall composition of different fit qualities.  As can be 
seen, qualities of 3 and 2 constitute essentially 90% of the cases, with the more extreme 4 and 1 evaluations 
relegated to the remainder.   

Figure 3.  Examples of four different fit qualities.  Clockwise from top left, the 
assigned quality values are 4, 3, 2, and 1, respectively.   
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C.  Least-squares versus Robust Regression Performance 
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Figure 5.  Fit success and likelihood of selection by fit type.
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 The principal advantage of least-squares 
fitting is its reliability, and the principal 
advantage of robust regression is its ability to 
present a more convincing fit in the presence 
of noisy data.  Figure 5 is a combination 
graph (and a potentially somewhat 
misleading one, in that it actually combines 
two conceptually different results) that 
shows both of these virtues in play in the 
present dataset.  One observes the much 
greater reliability of the nonlinear least-
squares fitting:  these fits succeed (converge 
without errors) nearly all of the time, 
whereas the robust regression cases succeed 
only about two-thirds of the time.  However, 
when the latter do succeed, they tend to be 
the preferred fit; they are selected about 40% 
of the time as the fit of choice, whereas the 
least-squares fits are selected only about 25% 
of the time.  These results encourage two 
distinct actions:  first, to try to improve the success rates of the robust fits; and second, to keep both fit-types in the 
mix so that there is a fallback for the expected failures of the robust fits. 
 
D.  Preferred Functional Form 
 In choosing the best fit for each of the 278 datasets, both the best and the runner-up of the four fits was 
identified.  The purpose of choosing both a first and second place was to help to determine whether fit functional 
form or fit approach (least-squares or robust) was the greater contributor to ultimate success.  Figure 6 gives two pie 

composition graphs to help make this decision.  The leftmost graph is a simple composition graph of the winning fit-
type.  From this chart, it is clear that the Omitron-recommended functional form, a+bxc, prevails as the form of 
choice, accounting for about two-thirds of the winning assignments (if both the least-squares and robust forms are 
considered).  Staying within the least-squares or robust venues, the Omitron form outperforms the alternative by 
almost a factor of two:  19 to 39% and 13 to 27%.  The rightmost graph draws the runner-up form into the mix to see 
whether a particular functional form prevails frequently as the top two assignments.  The functional form / fit type 
pairings follow the legend for the left graph (minus the “No Fit” category):  1 is LSQ, a+becx, 2 is LSQ, a+bxc, &c.; 

Figure 6.  Best fit composition and first-second place combination frequency.  The left graph shows the 
portion of best-fit cases represented by the four fit-types (and absolute failure, a fifth type).  The right graph 
shows the different combinations of the four fit types and the frequency that these combinations (and their 
reciprocals) occurred. 

2%

19%

39%

13%

27%

 

No Fit

LSQ, a+becx

LSQ, a+bxc

ROB, a+becx

ROB, a+bxc

26%

11%

8%

9%

18%

 

1-2
1-3
1-4
2-3
2-4
3-4

28%

 



 

the 1-2 designation means either type 1 was first and type 2 was the runner up, or the reverse (type 2 was first and 
type 1 was the runner-up).  The data are somewhat difficult to interpret because robust fit failures often occurred in 
pairs (meaning both types 3 and 4 failed), which forces the assignment of that case to the 1-2 category even if there 
is no intrinsic pairing between those two categories.  Be that as it may, it is clear that the 2-4 category dominates, 
which aligns with the overall superior performance of the Omitron functional form.   The 3-4 category similarly 
outstrips the 1-3, 1-4, and 2-3 categories, which speaks to the superior performance of the robust fitting.  If one were 
to select a single functional form and fit type, it is clear that it would be the Omitron form and robust fitting. 
 
E.  Residual Properties 
 The method of residual evaluation appropriate to a mix of least-squares and robust fit methods was earlier 
described; it is to take and examine the 50th and 90th percentile points of the absolute values of the residuals for a 
given fit-type.  These percentile points (hereafter abbreviated as 50ile and 90ile) can be collected for each fit-type 
for each dataset and then further summarized by taking the 50th, 68th, and 95th percentile of the entire collected set 
for each fit-type.  These results, given in graphical form in Fig. 7, establish a level of fidelity for the overall project 
of representing state vector accuracy from the fitted functions. 
 

 
It is clear immediately that the robust fit results significantly outperform the least-squares approach, but one is 
drawn instead to the values of the residuals themselves.  The “best fit” results range from a median value of 300m to 
over 10km at the 95th percentile, and that is just for the 50ile division; if one moves to the 90ile level, then even at 
the median level the “best value” results exceed 1km, and the 95th percentile value is close to 80km.  This is not 
absolute vector error, of course; it is merely the ability of the fitted curve to reflect the actual datasets.  As one is 
generally used to smaller-valued residual sets, this set stands out simply for its largeness. 
 There are three items that must be kept in mind.  First, the accuracy curves have been deliberately extended into 
low-tracking density areas, in which the vector errors are much larger and performance much more erratic than for 
the datasets that are generally studied.  Many of the large residuals come from these portions of the accuracy fits.  In 
a percentile sense, by providing more upper-end values, they both produce unusually high values for the higher 
percentile points and similarly increase generally more damped percentile points (such as the median) by pushing 
what are generally higher values down to that percentile level.  Second, the goal of the present approach is not 
infallibly to represent the state vector accuracy of a given object; rather, it is to allow the reasonably accurate 
characterization of an entire catalogue of objects.  While the approach is generally not reliable, or is reliable only by 
accident, for small groups or individual objects, for a large catalogue in the context of a simulation run over a 
reasonably long simulation period the statistical properties of the fits can exercise themselves; and large residuals 
thus do not affect the overall ability to predict accuracy in the aggregate.  Third, the results in Fig. 7 presume that 
each orbit regime is equally important for the typical space catalogue distributions encountered in simulations; but 
the percentages given in Table 1 make clear that this is not in fact the case.  In fact, nearly 70% of the catalogued 
objects are contained within just one of the fifteen orbital regimes used for this study.  A more appropriate statement 
of the residual error would be a representation weighted by the sample population of each of the orbital regime bins.  
Because non-parametric statistics have been used up to this point, it makes sense to provide weighted statistics in 

Figure 7.  Residual properties versus fit-type.  The 50ile case is given in the left-hand 
graph; the 90ile case on the right. 
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this same framework:  a given percentile measurement will be duplicated the same number of times as there are 
object samples in the dataset, all of these duplicated measurements will be placed into one long vector, and the 
vector will be sorted and percentile points extracted from it.  This will give weighted percentile points that can be 
plotted in the same framework as the equally-weighted results of Fig. 7.   
 These plots are provided in Fig. 8, and the results are much more sanguine.  For the 50ile case, two-thirds of the 
datasets have residual results less than 200m, and the 95th percentile value is only 500m.  The 90ile case is of course 

less satisfactory, but one must remember that this is a 
compilation of the worst results for each case; in this 
light, the fact that two-thirds of the cases are better 
than 600m is not nearly so disappointing; and the 
overall “worst of the worst” situation is within the 
accuracy of a typical GP element set in GEO. 
 

V.  Conclusions and Future Work 
 The present analysis has outlined a viable 
technique for greatly reducing the complexity of the 
state vector accuracy calculation while still 
maintaining acceptable fidelity.  The preferred 
functional form for the recommended accuracy decay 
curves has been developed and the preferred fit 
approach identified.  The divisions of orbital regimes 
and tracking mixes produced datasets that, for the 
most part, generated visually satisfying fits.  The 
residual sets, when taken in an unweighted sense, 
were somewhat larger than one would like; but when 

presented as weighted statistics they were much more palatable.   
 Two activities suggest themselves to improve and buttress this approach for broader application in SSN 
simulations.  The first is a rigorous bias analysis of the residual sets to ensure that they do in fact have unbiased 
statistical properties.  From the visual inspection of the graphs, this appears to be true; but it should be confirmed 
formally.  Through such an investigation the approach can be recommended for large-catalogue simulations without 
any reservations, as any larger-than-desired residuals will not affect aggregate assessments of catalogue state vector 
accuracy.  The second activity is to improve the stability of the robust regression fits so that they can contribute to 
more of the fit datasets.  A data conditioning routine may need to be written to detect underflow or other situations 
in which residual weights, once inverted, produce boundary violations for the fitting routine.  The degree to which 
this fit technique reduces the overall residual error is clear, and in most cases it does not jeopardize the “left peak” of 
the curves; so additional effort to broaden its applicability for this particular problem would pay sizeable dividends. 
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