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ABSTRACT 

 

With the advent of CCD optical technologies, the serendipitous collection of single-point photometry as part of 

metric tracking is now commonplace; and a number of applications for these data have been suggested and are in the 

early stages of experimental implementation.  Many such applications, however, rely on the ability to predict the 

photometric brightness of a given satellite illumination geometry, whether to determine sensor probability of 

detection of a given satellite pass or in order to calculate a brightness “residual” between the observed and expected 

brightness values.  Two-parameter brightness models are frequently employed in asteroid observation and, with 

some modification, have been applied to spacecraft, but these approaches relied entirely on deterministic modeling 

for an application that exhibits much stochastic behavior.  The Kriging modeling approach, derived from mining and 

geological research, provides a unique way to combine deterministic and stochastic models and thus produce 

optimized (minimum-variance) gridding.  This approach has been proposed and theoretically defended for 

spacecraft brightness estimation but has not been implemented in a manner appropriate for spacecraft and run 

against large photometry datasets. 

 

The present project has performed and exercised such an implementation.  The target dataset is first “detrended” 

using a straight-line deterministic model with glint accommodation.  Next, phase-declination anisotropy is 

investigated and scaling factor(s) applied to the dataset, if necessary, to transform the dataspace into an isotropic 

situation.  After this, a full-dataset variogram (the inverse of a correlogram) is computed from the isotropic dataset—

this will determine the relationship between data point separation distance and the resulting amount of change in 

variance.  Once the experimental variogram has been fitted to an appropriate model, the model results can be used to 

determine the degree to which any given observation can be said to be correlated with any other observation:  this is 

the basis by which the brightness value at a certain grid point can be expressed as a weighted linear combination of 

the surrounding observations, with the weights to apply to each measurement determined from the variogram model.  

This approach produces both a brightness map over the desired grid space and additionally a variance map that gives 

a (relative) statement of the uncertainty of each gridded point.  Several statistical tests are then run to assess the 

quality of the entire brightness-space solution for the object. 

 

The particular implementation includes a GUI mode that allows the analyst to control the particulars of the 

detrending, anisotropy, and variogram solutions, as well as to file up the results of a satisfactory solution, yielding 

brightness gridding matrices that then can produce further brightness granularity with two-dimensional interpolation.  

It also includes a batch mode that, using system defaults, will run against an entire catalogue of brightness data for 

many objects.  The latter is the functionality employed presently to produce brightness products for the new SP 

Sensor Tasker, operated by AFSPC/21stSW/1SPCS. 

 

0.  SATELLITE ILLUMINATION FUNDAMENTALS 

 

The observed brightness of a satellite is a function of both the degree of illuminated surface that faces the observer 

and the reflective properties of the particular surfaces that happen to be illuminated.  The accompanying diagram 

(Fig 1) illustrates the (angular) method by which these illumination conditions are usually described.  The solar 

phase angle, which is the angle from sun to spacecraft to sensor, governs the amount of illuminated surface that will 

face the observer; the phases of the moon, for example, are examples of low (full moon), moderate (half moon), and 

large (new moon) phase angles.  Once the amount of exposed illuminated surface is determined, two additional 

angles are necessary to define which particular parts of the satellite fall in the illuminated area facing the observer; 

while many angles could be chosen, two convenient angles are created by the definition of an aspect vector, with 

vertex at the satellite’s center of mass and proceeding normal to the satellite’s principal surface.  The aspect angle is 

that formed by the aspect vector-spacecraft-sensor vector pair, and the obliquity angle is the dihedral angle between 



the planes formed by the phase and 

aspect angles.  With these three angles 

known, the illumination geometry can 

be specified completely. 

 

Unfortunately, for most spacecraft the 

particular satellite orientation is not 

known, making the construction of the 

aspect vector impossible and therefore 

leaving the aspect and obliquity angles 

indeterminate; and at first this would 

seem to counsel the use of phase as the 

only independent variable in 

attempting to predict satellite 

brightness.  However, most 

geosynchronous satellites are three-

axis stabilized and thus maintain a 

fixed orientation with respect to the 

earth (and ground-based sensors).   In 

such cases, the aspect vector can be 

constructed; but one can proceed 

more easily in noting that the illuminated part of the satellite will be dictated entirely by the solar declination angle 

(determining whether the satellite is top- or bottom-lit) and the latitude of the ground-based sensor.  In such cases, 

solar declination angle, which is very easily 

calculated as a function of the day of year, can 

replace the more complicated construction of the 

aspect vector and calculation of the resultant angles.  

In those additional cases in which there is a quasi-

earth fixity (such as spin-stabilized geosynchronous 

satellites or certain other standard orbits), the use of 

the solar declination angle could be expected to help 

somewhat, so it was seen as expedient to advance 

both solar phase angle and solar declination angle as 

independent variables for the purposes of satellite 

brightness modeling. 

 

I.  SOFTWARE INITIAL SETUP 

 

In GUI mode, the Kriging Optimized Interpolation 

(KOI) Tool software initially displays the following 

setup window (Fig. 2).  In this window, the user can 

select the satellite of interest, observation dates, and 

the photometry database to be queried (data are 

presently available from the three GEODSS sites, the 

RAVEN telescope at MSSS, and SBV).  Photometry 

data can also be loaded from a stand-alone ASCII 

file.  The “Start” button moves the program to the 

next process, which is the application of a 

deterministic model to “detrend” the data.  The user 

also has the option to skip all the intermediate 

windows and display only the final results window.   

 

II. DETRENDING THE DATA 

 

KOI produces brightness predictions through the 

application of two distinct model types, a 
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deterministic model and a stochastic 

model.  Since it is rare to be able to 

produce a high-fidelity satellite 

deterministic model that will yield 

reliable brightness predictions, the present 

strategy is to apply a generic deterministic 

model to the data and try to fit the 

resultant residuals to a stochastic model, 

thus hoping to account for the entire 

photometric response through the 

simultaneous use of both models.  The 

application of the deterministic model in 

order to remove systematic effects, 

leaving only residuals to be modeled 

stochastically, is called “detrending.”  A 

number of previous studies have 

established, with reasonable error 

boundaries, a linear relationship between 

satellite brightness and solar phase angle 

[1, 2. 3, 4, 5]; so this seems a natural 

model to apply, especially in the absence 

of any obvious deterministic relationship 

between brightness and solar declination 

angle (since such a relationship would 

depend entirely on the construction 

details of a particular spacecraft).  The 

data are divided into a positive and 

negative phase angle group, further 

divided into 3-degree phase bins, and 

each bin then summarized by the 68
th

 

percentile value of the brightness values 

in that bin.  A robust regression fit is then 

applied to the binned data summary points, 

and a t-test to the resultant slope is conducted 

to determine if the resultant linear behavior is statistically significant.  If it is, then this resultant line is used as the 

deterministic model; if it is not, then no deterministic model is applied; and for this satellite one relies entirely on the 

stochastic model.  The fit results are displayed in the detrend window (Fig. 3). If the fit is successful, the 

deterministic model values are subtracted from the dataset, leaving a residual set to be accommodated by the 

stochastic model as part of the Kriging step.  If one half-plane produces a statistically-significant fit and the other 

does not, the mean of the data is subtracted from the non-fit side in order to create compatibly-sized residuals across 

the entire phase-declination space.   

 

While satellite photometric returns are almost always a combination of diffuse and specular response, the specular 

component can become very large and predominate the response at low phase angles [3].  Since this is an anticipated 

effect, an attempt should be made to accommodate it by the deterministic model.    The software tests for the 

presence of glint response by comparing the individual bin summary brightness values (for phase angles less than 20 

degrees) to that predicted by the robust regression line; and if any of these differences exceeds one visual magnitude, 

the presence of glint response is presumed.  In glint situations, the bin summary values are fitted to a model that is a 

combination of a straight line and “Gaussian” response, of the form 
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in which α is the phase angle and A-D are constants to be determined by the fit.  In principle, this form of the model 

could be used in all cases, with constant C assuming a value near 0 for cases that exhibit no glint.  However, the 

uncertainties and instabilities of non-linear optimization counsel, at least in batch mode, the invocation of this more 

elaborate model only when it appears to be warranted.   

 

The GUI allows the user to enable or disable the glint model, pick the method of fitting, control whether or which 

half-plane is actively fit, and force both half-plane fits to share a specified common y-intercept.  Selecting “Done” 

moves to the next analytical phase of the program, which is the isotropic transformation. 

 

III. TRANSFORMING TO ISOTROPIC CONDITIONS 

 

As was discussed in the initial section, the stochastic brightness model is constructed to be a function of both solar 

phase angle and solar declination angle.  One can imagine (and indeed the result will take this form) a grid with 

phase on the x-axis and declination on the y-axis, and observed (and predicted) brightness as the out-of-plane (z) 

variable.  Constructing an algorithm for an optimized interpolation of this grid is straightforward if the situation is 

isotropic, that is, the difference in brightness between two points is independent of the direction of the segment 

between them.  In such a situation, the expected correlation between the brightness of two points would be the same 

both purely in the phase direction and purely in the declination direction. 

 

 Of course, there is no reason to suppose, and good a priori (and empirical) reasons to doubt, that such a 

situation inheres for most satellites.  The hope, however, is that through a linear transformation (rotation and scaling 

of axes) this anisotropic situation can be transformed into an isotropic one.  Since in the present case there is no 

ambiguity from model definition regarding the orientation of the axes (as there might be, for example, if x and y 

were spatial variables whose alignment with physical phenomena needed to be secured), the only variable to 

determine is a scaling factor (here chosen to be applied to the y or declination axis)   To calculate this anisotropy 

scaling factor, one must determine the degree of brightness correlation in each discrete direction and then the scaling 

factor that will minimize the inter-directional difference of this correlation.  

 

 The usual method in regionalized variable theory for measuring correlation is actually to measure its 

inverse, which is the degree of variation as a function of separation distance, the so-called variogram.  The equation 

for the raw variogram is given in Eq. 1.  It is a scatter plot of the square of brightness (z) variation versus distance 

(h) between data points: 

 

 
Eq. 1 

 

The experimental variogram, given in Eq. 2, bins the data points and gives a functional relationship: 

 

 
Eq. 2 
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An example of an experimental 

variogram plot, specifically one that 

constitutes what is called a stationary 

function, is shown in Fig. 4.  The 

semivariance (γ), which gives a 

measure of degree of variation, 

approaches zero at small separation 

distances (h) and increases with 

separation distance, until finally it 

approaches a stationary value, or sill.  

At this separation distance (a, the 

correlation length), the correlation 

between points becomes the same as 

the overall variance of the sample and 

therefore no longer increases with 

increased separation distance; at this 

distance, brightness values are no 

longer considered correlated and the 

boundary of the region of the 

“regionalized variable” has been reached.  Not all variograms have the same appearance as Fig. 4; some never reach 

a sill (a non-stationary situation), and others maintain some intrinsic variability even at zero separation distance (the 

so-called “nugget effect”); but experience shows that a variogram with the above characteristics is a reasonable 

expectation for satellite brightness data.  

 

To determine the variation in correlation 

as a function of direction (i.e., the 

anisotropy), we construct variograms in 

each direction and compare them.  This is 

done by dividing the phase-declination 

plane into “wedge angles” with their 

vertices at the origin and considering only 

those points that fall within each wedge 

angle for the calculation of the variogram 

in that direction.  Choosing a wedge angle 

of thirty degrees results in twelve wedges, 

each with its own variogram (presuming 

each wedge contains enough data to 

permit variogram calculation).  The 

feature of interest from each variogram is 

the correlation length a, the length at 

which the sill is reached.   

 

 The ordered pairs of wedge angle and 

correlation length are plotted in polar 

coordinates.  If the data were isotropic, the 

resulting plot would be a circle because all 

the correlation lengths would be equal.  

For anisotropic data, we attempt to 

recreate this situation by fitting these 

points to an ellipse using ordinary least 

squares and then determining the scaling 

of the declination axis necessary to 

transform the ellipse into a circle [6].  The 

software as presently implemented tries 

four different wedge angles of 15, 30, 45, 

and 60 degrees, using the wedge angle 

Fig. 4 Experimental Variogram 

Fig. 5 Anisotropy Display 



that produces the smallest residual sum of squares for the anisotropy factor calculation.  Fig. 5 shows the results 

display for this process.  

 

The user can choose to recalculate the anisotropy factor with different options.  Instead of using an ordinary least 

squares fit, robust regression and weighted least squares are also available.  The user can also set the wedge angle 

and one or both of the ellipse parameters, or skip the whole process and set the anisotropy factor himself/herself.  

The anisotropy factor is then applied to the dataset, transforming it into this new (mostly isotropic) coordinate 

system. 

 

IV.  VARIOGRAM CALCULATION AND MODEL FITTING 

 

Now that an isotropic (or near-isotropic) situation has been produced via a coordinate transformation, a variogram 

can be calculated for the overall dataset.  This variogram will provide the correlation-vs-separation-distance 

relationship needed for the optimized interpolation.  As each desired brightness grid point can be presumed to be 

determined by a linear combination of the surrounding points, the variogram characteristics will determine how to 

weight those surrounding points in the linear combination.  To use the variogram in a calculation context, we must 

curve-fit a canonical model to it.  Models commonly used in variogram analysis and included in this software 

implementation are the Spherical, Exponential, Gaussian, Linear, and Power models, as defined by the equations 

below: 

 

 
Eqs. 3-7 

 

The constants for each of the models above are determined by non-linear least squares fitting to the experimental 

variogram, and the model producing the smallest residual RSS is selected by the software.  Results are shown in the 

Variogram Model Results window (Fig. 6.).   

 

The user has the option to choose a different model and/or set the various model parameters.  By clicking the 

“Update” button, the user can view the subsequent changes to the model.   Clicking “Done” invokes the Kriging 

stage of the program. 
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Fig. 6 Variogram Model Display. 

 

V.  KRIGING 

 

Kriging estimates the brightness at each point in the brightness grid by presuming this brightness to be a linear 

combination of the surrounding observed data points.  Each point used in the linear combination is weighted 

according to the variogram model, which was selected in the previous step.  The constraints used in determining the 

set of weighting factors for the estimation are that the solution be unbiased (Eq. 8) and the variance be minimized 

(Eq. 9) [7].  Lambda represents the to-be-calculated weighting factors to be applied to the surrounding points, and 

gamma is the variogram function: 

 

 
Eq. 8 
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Eq. 9 

 

The software uses a Lagrange multiplier technique to effect the minimization solution. 

 

A desirable additional feature of Kriging is the ability to generate an estimation variance unique to each determined 

gridding point, as a function of the variogram, the calculated weighting factors, and the Lagrange multiplier (ν): 
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VI.  MODEL VALIDATION 

 

Two approaches to model validation are 

accommodated by the developed 

software:  a visual approach, which uses 

a jackknife plot, and explicit statistical 

tests for model adequacy.  The 

jackknife model validation sequentially 

removes one point from the data and 

predicts the brightness for that point 

from the remaining data using the 

Kriging technique.  The jackknife 

display (Fig. 7) plots each observed 

point (red x’s) and about each a high 

and low predicted point, derived from 

the prediction plus and minus a factor of 

the calculated Kriging variance (blue 

x’s).  Plots sorted on phase and 

declination, as well as a purely 

sequential plot, are provided.  The 

display is somewhat difficult to read at 

less than full size, but it allows the user 

visually to determine how often the 

observed value falls within a given 

range about the predicted value. 

 

In addition to visual assessment tools, a 

number of statistical tests are run to help determine the adequacy of the constructed model.  The two attributes we 

wish primarily to test are unbiasedness and adequacy of error modeling.  To execute such tests, we first need to 

construct a set of residuals to which to apply them.  A convenient way to do this is to order the data points at random 

and, beginning with the first data point, predict the value of the second and calculate the (residual) difference; then 

use the first two to predict the third and calculate a residual, &c. until the entire dataset has been so analyzed and a 

residual set produced [7].  The so-called “Q1” test assesses whether the residuals are biased, and it does this by 

taking the mean of the residuals, as shown in Eq. 11 below: 

 
Eq. 11 
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Fig. 7 Jackknife Display. 



Presuming all the systematic errors have been solved for (an assumption to be discussed explicitly below), one can 

thus expect a Gaussian distribution with 0 mean and variance 1/(n-1), where n is the number of residuals.  From this 

information, the p-value for Q1 can be calculated and therefore the reasonableness of the unbiasedness presumption 

assessed.   

 

If the calculated Kriging variance models the error well, the ratio of the calculated residual to the square root of the 

Kriging variance should be 1.  A convenient way to test for this is to presume that this ratio is a normal variable; if 

so, then the sum of the squares of this ratio should conform to a chi-squared distribution with n-1 degrees of 

freedom, constituting the “Q2” test below: 

 

 
Eq. 12 

 

As with the Q1 test, p-values for the Q2 factor can be calculated and the degree of conformity to the chi-squared 

distribution determined. 

 

Finally, and especially since the Q1 and Q2 tests implicitly require it, these residuals themselves should be tested for 

conformity to normality.  There are many appropriate goodness-of-fit tests described in the literature, but two that 

have proven both robust and convenient from an implementation perspective are the D’Agostino D-test (variant of 

Shapiro-Wilk) and an omnibust 3
rd

 and 4
th

 moment test that examines the departure of the skewness and kurtosis 

from that expected from a normally-distributed population [8].  The results from all four of these tests are displayed 

as part of the results window, described below. 

 

VII.  RESULTS DISPLAY 

 

The results window (Fig. 8) displays all the results from the previous windows along with the brightness and 

variance maps, vital satellite statistics, and a data density plot.  The model validation results for the statistic and 

normality tests are also given.  The jackknife display window can be opened by clicking the “Jackknife” button.  By 

selecting “Save” from the “File” menu, a user can save the brightness and variance maps to a text file. 





n

k

k
n

Q
2

2

2
1

1




 
Fig. 8 Results Display 

 
 

VIII.  BATCH MODE 

 

A batch run can be implemented by selecting “Batch 

Window” from the “View” menu on the initial window.  

This opens a window (Fig. 9) where the user can setup a 

batch run.  The user can select a list of satellites to process 

by entering or browsing for the file.  The user can also select 

the file containing a list of wedge angles to use for the 

anisotropy calculation and whether or not to execute a full 

run for all the wedge angles or only the best angle.  The user 

can select the database and minimum number of 

observations for a satellite to be processed.  The user can 

also decide whether or not to detrend the data and, if so, 

check for glints. 

 

IX.  FUTURE WORK 

 

We are currently working on functionality to apply the 

Kriging optimized interpolation process to color photometry 

data.  The present implementation already includes a feature 

to produce brightness and variance maps for color 

photometry within a single color band.  The extension of the 

present functionality would be to use detrending and 

Fig. 9 Batch Mode Display 



variogram parameters from a satellite’s “white-light” solution, which is generally a more data-rich environment, to 

perform interpolation for relatively data-poor color bands.  It is not clear at present whether it is reasonable to 

presume these parameters to be relatively invariant across a satellite’s color bands, but a fairly straightforward study 

effort should determine this. 
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