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ABSTRACT 

 

The Visual Magnitude Satellite Catalogue effort [1] presently employs a simple straight-line model for solar phase- 

and declination-angle dependencies, an approach that, at least for declination angle, lacked any real pedigree.  The 

present attempt to improve the modeling began by investigating several competing gridding techniques that would 

allow two-parameter brightness dependencies to be displayed visually and selected Universal Kriging as the 

preferred methodology, as it can be demonstrated to produce minimum estimation error.  Brightness histories from 

the SBV satellite were examined with krigged gridding for two difficult-to-model spacecraft:  the HS-376 (cylinder) 

and HS-601 (cube with panels) geosynchronous satellites; and observed second-degree dependence on declination 

angle and, less commonly, phase angle suggested the use of a quadric surface fitting function.  Quadric surface fits 

to the krigged gridding compared favorably to similar fits of the actual data while outperforming them in producing 

reasonable brightness extrapolation to areas of low data density.  These results argue for a change of the VM 

SATCAT model to a quadric surface fit from krigged data, which, while not perhaps the final solution, would be a 

notable improvement over the present technique. 

 

1.  INTRODUCTION AND BACKGROUND 

 

Time-intensity satellite brightness data have been used for many years for space object identification (SOI) and 

other applications.  Discrete brightness estimates, generally a by-product of a metric observation and, when retained 

at all, used only at sensor sites and there only for mission planning purposes, are only now emerging as candidates 

for broader applications.  The desire for SOI is increasing, and interest is growing in SOI-like products assembled 

from discrete brightness data.  In support of the full-special-perturbations (SP) satellite catalogue, a new sensor 

tasking algorithm is under development, among whose needed inputs is accurate modeling of anticipated satellite 

brightnesses in order to take cognizance of sensor detectability in making tasking assignments.  Finally, there is a 

requirement to characterize the brightness distribution of the satellite catalogue in order to make space debris 

estimates and define requirements for new sensors as the interest in tracking smaller objects grows.  All of these 

needs argue for a robust satellite brightness model that can produce statistically-described brightness estimates for 

individual objects in a particular illumination geometry.  Next year, it is expected that the GEODSS system will 

complete its DEEP STARE upgrade to CCD technology, and a feature of this upgrade is the retention of a well-

calibrated visual magnitude measurement for every observation taken in sidereal mode; since this system of nine 

active cameras could well produce 30,000 brightness measurements in a favorable 24-hour period, the need for a 

robust model to represent this large data set is all the more acute. 

 

The Visual Magnitude Satellite Catalogue effort, now at release 3.0, has been a first attempt to provide such a 

product.  It uses as input brightness data from the Space-based Visible satellite (1996 to present), the Small-Aperture 

Telescope Augmentation experiment run at Edwards AFB (latter part of 1999), and the NASA Cloudcroft observing 

facility (1998-1999).  Two features of this project that went somewhat beyond previous efforts were developing 

brightness models for as much of the satellite catalogue as reasonable data were present (about 90% of 

geosynchronous and 40% of DS satellites) and producing models that were not functions of only solar phase angle 

but also solar declination angle.  The ability actively to fit most of the DS catalogue and achieve estimation errors 

generally less than a magnitude testified to the reasonableness of the approach, but it nonetheless suffers from many 

limitations.  First, the model employed is very simple, presuming a relationship of the form 

 

  321 CCCMv   . (1) 



Multiple studies [2,3,4], including a recent effort that attempted specifically to investigate behavior at large phase 

angles [5], have validated the linear relationship of satellite brightness to solar phase angle, at least for phase angles 

greater than 20 degrees; but there are no known study efforts that widely investigate the functional form of 

brightness dependency on solar declination angle.  The linear assumption in (1) above seemed a reasonable initial 

guess but was based on rather little actual data examination.  Second, no cognizance was taken of whether the 

satellite’s orientation were actively maintained.  The simple model might be adequate for debris or inactive payloads 

whose specular response is minimal and uncorrelated with viewing geometry; but objects whose stable payload 

orientation make their brightnesses subject to significant and predictable glint probably require something more 

elaborate.  Finally, true random sampling is prevented both in phase angle, by sensors trying to optimize brightness 

(and therefore detectability) by scheduling as many of their observations as possible at low phase angles, and in 

declination angle, by sensor outages, seasonal changes in operating time, and the fixed time-period of experimental 

data preventing a temporally-uniform tracking volume spread over the whole of a year.  This problem leads to the 

question of whether brightness data should be gridded before it is fit. 

 

2.  GRIDDING CONSIDERATIONS 

 

Even highly-sampled satellites exhibit significant irregularities in the phase- and declination-angle distributions of 

their brightness samples.  The data-density contour plot in Figure 1 below, typical of a highly-sampled satellite in 

the VM SATCAT, shows the notable regions of undersampling or complete absence of brightness data.   
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Figure 1:  Data density contour plot for object 23199 (HS-376 cylinder).  Despite the presence of 659 

brightness samples, there are still significant regions of no data at all (black) or fewer than 6 samples per 10 x 

5 degree frame (blue). 

 

What is the best way to construct a full functional “map” of an attribute when the samples are random (in terms of 

independent variable values) and sparse?  This problem has been thoroughly investigated in geology, in which, for 

example, topographic maps, water table contour plots, and ore-density diagrams frequently must be constructed 

from irregular and sparse data, often data that are available serendipitously (such as water table height data from 

wells that happen to exist) and cannot be gathered in accordance with design-of-experiments practices.  Three basic 

gridding techniques are frequently encountered in geology, and it is helpful to explain them briefly to consider their 

relative merits.   

 

A proximity moving average is the most basic of gridding approaches.  To determine the value of each grid point, a 

circle (or sphere) is expanded until a set number of data points is encountered; and a weighted average of these 

points is calculated, with each point’s weight determined by its distance from the grid point (usually 1/d or 1/d
2
).  

The technique’s principal advantage—its ease of comprehension and implementation—is usually considered to be 

overshadowed by its disadvantages:  it is heavy-handed in that it masks local detail very quickly, it performs poorly 

at the edges of the grid, and it does not ensure a good data sample about the grid point because all of the sample 

points might come from one “side” of the grid point.  One correction for this latter problem is to require that a 

certain number of data points come from each quadrant or even octant about the grid point; but this approach, while 

ensuring a certain data diversity, usually requires that the point selection circle be expanded so broadly that all local 

detail is lost.  In order to improve local accuracy, a second technique was developed that, rather than using a 

weighted average of the selected data points, fits a surface to the selected points and uses the surface to estimate the 



grid point.  This usually results in a better local fit, but it can produce wildly unrealistic values some distance from 

the data points used (e.g., in trying to estimate values close to the grid perimeter or lacunae).   

 

Kriging (named after D.G. Krige, a South African mining engineer) is a gridding technique developed to overcome 

these difficulties [6].  It makes use of regionalized variable theory, in which a variable is seen to vary continuously 

in any given neighborhood but not in a fully deterministic way; this is how many geological phenomena (and, it is 

postulated, satellite brightnesses) vary.  To try to characterize a regionalized variable, one wishes to determine the 

degree of regional dependence as a function of distance from an arbitrarily-selected point.  The building block of 

such a characterization is the semivariance, which, for a fixed sampling interval, is calculated as follows for a 

distance h from an arbitrary point: 
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If this quantity is calculated for a large range of values of h, a plot of these data (and functional approximation of the 

plot) is called a semivariogram.  Figure 2 below illustrates a canonical semivariogram and its core properties.   

 

 

Figure 2:  Canonical semivariogram conforming to spherical model.  Sill is indicated by 
2

0 , range by a. 

 
As the graph makes clear, the semivariance γh increases with distance h until the increase tapers off and the 

semivariance becomes invariant with h.  At this distance, called the range and denoted by a, the two points are no 

longer correlated at all; and their semivariance becomes equal to the overall variance 
2

0 , called the sill.  Ideal 

semivariograms pass through the origin (there is no variation with distance at a distance of 0) and reach a sill at an 

appropriate range.  Semivariograms are first sketched empirically from sets of explicit calculations of (2) above; and 

when a durable dataset is assembled, the results are fit to one of several models.  The canonical semivariogram 

model is the so-called spherical model, defined by the equation 

 

 









3

3
2

0
22

3

a

h

a

h
h   (3) 

 

and used to create the example in Figure 2 above.  When h reaches the range, the semivariance is set equal to the 

sill.  Logarithmic and linear semivariogram models are also commonly used; all require some alteration to force the 

function to a sill value at some range. 

 

If the correlation among data points as a function of their relative distance is known, this information can be used to 

calculate weighted averages for proximate average gridding in a manner that minimizes the estimation error.  The 

full derivation of the minimization equations will not be provided here [7], but it follows the usual procedure of 

beginning with the equation for the error variance, substituting a random variable function for the unknown “true” 

values of the estimated points, taking partial derivatives with respect to the weighting variables desired, and setting 

these partial derivatives equal to zero as an expression of relative minima.  For the case in which a grid point were to 

be estimated from three known data points, the minimization equations would be the following: 
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in which wx is the averaging weight to assign to point x and 
xyh  is the semivariance between points x and y (the 

required semivariances can be determined from the developed semivariogram for the dataset).  Requiring that the 

estimate be unbiased introduces a fourth constraint: 

 

 0321  www  , (5) 

 

making the problem overdetermined; this bit of good fortune can be used to introduce a Lagrange multiplier to force 

a minimum-error solution.  The final set of equations to be solved thus takes the form 
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which is four equations in four unknowns.  Once solved, the estimated value for the grid point p is given by 

 

 332211
ˆ pwpwpwp   ; (7) 

 

and the error variance for that estimated value, which is the weighted sum of the semivariances from each of the data 

points to the grid point, is determined by 

 

 
ppp hhhe wwws

321 321

2    (8) 

 

The standard error of the estimate follows immediately by taking the square root. 

 

Kriging advances itself as the preferred gridding solution because it both produces a solution with minimum 

estimation error and allows the calculation of an error variance for each grid point.  This technique is not, however, 

without its own difficulties.  If the entire two-dimensional surface to be gridded includes a slow change in average 

value across the entire surface, the surface exhibits “drift”, which must be removed before kriging and then added 

back after the kriging solution is obtained.  Drift models are usually either linear or quadratic in character, and care 

must be exercised in model choice.  Proper selection of the semivariogram model is also necessary for a reliable 

kriging solution.  Finally, the number of points to use for each grid point estimate needs to be determined, and 

different sample size choices can alter the results.  A kriging solution ready for “prime time” requires at least mild 

investigation of each of these items to ensure that judicious selections have been posited; and before any widespread 

use of kriging is introduced to the VM SATCAT effort, such investigations will take place.  At the proof-of-concept 

level, however, it is sufficient to accept algorithmic defaults. 

 

3.  BRIGHTNESS BEHAVIOR INVESTIGATION:  GENERAL 

 

Satellite brightness behavior against solar phase and solar declination angles was investigated by dint of surface 

plots of these data, generated by kriging techniques.  The kriging routine available with the analysis package of 

Origin 6.1 was used, with a data limitation of 0 – 90 degrees for solar phase angle (which excluded very little data, 

as there were only a few observations taken at an angle greater than 90 degrees) and set to form an even 32x32 grid 

(to prepare the gridded data for future Fourier transformation or wavelet decomposition, if desired).  The routine was 



unfortunately unstable, failing in about 25% of the cases due to sorting and matrix inversion errors.  Because the 

source code for the interpreted routine was not available, few remediation avenues presented themselves.  Once this 

study was complete, it was discovered that a MATLAB-compatible kriging product has been developed by the 

Woods Hole Oceanographic Institution and is freely available to engineers and scientists; this package is a 

promising candidate to replace the Origin routine should full-catalogue kriging be desired.  Fortunately, the number 

of successful cases in this study was large enough to allow preliminary conclusions to be drawn, as there were no 

common characteristics among the cases that failed and thus no reason to suppose that the exclusion of the failures 

introduced a bias. 

 

The surface plots were examined visually to determine what sort of model fitting function they suggested.  This sort 

of evaluation is heuristic and bounded by the mandate to generate a simple model that can fit most cases reliably.  

While there were occasional suggestions of cubic or logarithmic behavior, in general it appeared that a quadric 

(second-degree) surface would work reasonably well, if degenerate cases were permitted.  A second-degree function 

also avoids the instabilities of higher-degree polynomials and singularities associated with logarithmic functions.  

The general form of the proposed fitting function is thus 

 

 zFEDCBA   22
 , (9) 

 

in which alpha represents solar phase angle and delta represents solar declination angle.  The including of the 

rotation term(s) has been shown to be prudent in examining the plots.  The fits were accomplished by the usual least-

squares regression technique.  An F-test was applied to the regression results, and the fit was in principle rejected if 

a significance value of 0.05 could not be achieved (this turned out to be a superfluous condition, as all attempted fits 

achieved at least this level).  A t-test was then applied to each regressor variable, and a variable was rejected as not 

contributing significantly to the regression if a t-test significance level of 0.05 could not be achieved.  In such a case, 

the failing variables were eliminated and the regression re-run with the significant regressor variables only; this 

mitigates against colinearity and ensures more meaningful r
2
 values.  Each results set includes a bar graph of the 

number of fits for which each of the regressor variable types contributed significantly to the regression; it is 

interesting that solar declination angle is at the least on par with phase angle as a significant contributor to the 

regression and often displaces it for this distinction. 

 

The fits were executed against both the raw brightness data and the krigged grid data.  In general, these two fit 

approaches did not yield significantly different results in that they both produced fits with the same “look and feel.”  

The fits against the krigged data did, however, outperform the raw-data fits in two respects.  First, they yielded more 

realistic predictions of expected performance at the extremes of the grid space.  Admittedly, this type of evaluation 

is circular in that it introduces an a priori expectation of such behavior even though the study is supposed to be 

determining what that behavior actually is.  However, fits that show substantial changes in predicted brightness 

away from the more dense data areas, especially if the change in direction is counterintuitive, can be considered 

inferior to those that behave in a more moderate and continuous way.  Second, for each fit a modified error statistic 

is calculated:  the amount the constant term of the fit would need to be increased in order for a given percentage of 

the data points to fall below (i.e., brighter than) the fit surface.  One of the principal uses for the VM SATCAT is to 

aid sensor tasking assignments; and in assigning tasking, one wishes to achieve a certain confidence that for the 

postulated viewing geometry the satellite’s brightness will exceed a given minimum value.  This error statistic is 

computed for both fit types (to raw data, evaluated against the data points; and to krigged gridding, evaluated against 

the grid points), and in general the krigged fits outperform the data fits, often by close to a factor of two.  Because 

the krigged situation will reproduce all the data points exactly (which is why it is referred to as an “exact 

interpolator”), these two sets of error statistics can be compared.  These results will be shown in the ensuing 

sections, as the specific results from the two examined bus types are presented. 

 

4.  BRIGHTNESS BEHAVIOR INVESTIGATION:  HS-601 

 

The HS-601 bus is a traditional rectangular-prism, 3-axis-stabilized satellite bus, powered by deployable solar arrays 

and used to host a variety of communications payloads.  A picture is given in Figure 3.  The plethora of protrusions 

(solar panels, communications antennae, &c. predispose the satellite to frequent and significant glint returns.  All 

HS-601 objects investigated here were actively stabilized according to the open-source Satellite Encyclopedia. 



 
Figure 3:  HS-601 communications satellite.  Figure courtesy Encyclopedia Astronautica. 
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Figure 4:  Krigged surface plot and second-degree fit for object 23132.  The contour lines’ near parallelism to 

the declination axis indicates their independence from declination. 

 

About two-thirds of these cases manifested linear or near-linear brightness variation against solar phase angle and 

very little variation with solar declination angle, and indeed some second-degree fits to the data eliminated all 

regressor variables except that of solar phase angle.  This was hardly the majority case, however; more commonly at 

least one of the solar declination regressor variables was retained, and quite often both.  A typical case manifesting 

weak declination-angle dependence, and the associated fit, are given in Figure 4.  More declination dependence is 

observed in the remaining third, of which object 23313 is a good example.  Figure 5 gives both the krigged and 

quadric surfaces.  The “target” or “rainbow” quality of the contour plot characterizes these cases. 
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Figure 5:  Krigged surface plot and second-degree surface fit for object 23313 



Figure 6 gives some fit performance information.  The left-hand graph gives the percentage of the fits in which each 

regressor variable contributed significantly to the regression.  The fits to the “smoothed” krigged surface produce 

more elaborate quadric surfaces, but this is not particularly surprising.  What does come as a surprise is that phase 

angle does not at all dominate the fitting; contribution is more or less even among the five variable types.  The right-

hand graph plots the error statistic described in Section 3 above for three percentile levels.  The fits perform well 

here; an elevation of the fit surface of only 0.6 magnitude is sufficient to ensure that the surface serve as a 95
th

 

percentile upper bound. 
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Figure 6:  Regressor variables used and error statistics for HS-601 fits 

 

5.  BRIGHTNESS BEHAVIOR INVESTIGATION:  HS-376 

 

The HS-376 is a cylindrical, spin-stabilized communications satellite.  Solar arrays are on-body, eliminating the 

need for active array management; and antennae and other communications apparatus reside at one end of the 

satellite that is de-spun and thus, in a geosyncrhonous orbit, remains in a fixed position relative to the earth’s 

surface.  A picture of this spacecraft is given in Figure 7. 

 

 
Figure 7:  Generic version of HS-376.  Figure courtesy Encyclopedia Astronautica. 

 

Very different response was observed depending on whether the satellite were still actively stabilized, the source for 

which was the open-source Satellite Encyclopedia.  Non-stabilized payloads’ brightness response tended to fall into 

two categories:  very little dependence on any aspect of viewing geometry or a palpable but not overwhelming 

dependence on phase angle.  The former is illustrated in Figure 8 (object 14158), which, although fitting both 

declination and the square of declination, produces such small regressor constants that the fit is really not much 

better than taking the mean (r
2
 = .08).  The latter is seen in Figure 9 (object 15993), in which phase angle influence 

dominates the fit.  In both cases, the total brightness span is narrow, remaining between two magnitudes. 

 

The fit  results for the unstabilized case, summarized in Figure 10, show a surprisingly high contribution from 

declination and low contribution from phase, although it must be remembered that the correlations here are weak—

the median r
2
 value is only 0.2.  The error statistics are pleasantly narrow; but in considering how narrow the actual 

data spread was, they do not seem all that impressive. 
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Figures 8 and 9:  Krigged and fit data for satellite 14158 (above) and 15993 (below) 
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Figure 10:  Fit results for unstabilized HS-376 case 

 

The stabilized HS-376 case presents the most interesting results.  Figure 11 shows the more typically-observed 

situation:  low-phase brightness decreasing with increasing phase angle, yet a considerable variation with declination 

angle.  Localized glints appear as “stalactites” in the krigged plots.  Figure 12 represents a more unusual but not 



unique situation of high-phase glint predominating the results.  Some brightness increase at low phase is observed, 

but it is dwarfed by the considerably brighter response at high phase.  This response is an artifice of the satellite 

construction, but it is consistently observed and thus merits modeling as such.  Fit descriptive data, given in Figure 

13, shows again the surprising deference phase angle pays to declination angle, both as a first- and second-degree 

term.  This case also manifests the largest error statistics, requiring a full magnitude’s augmentation of the fit’s 

constant term to reach a 95% minimum brightness level. 
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Figures 11 and 12:  Krigged and fit data for stabilized HS-376 objects 21906 (above) and 21964 (below) 
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Figure 13:  Fit descriptive data for stabilized HS-376 



6.  CONCLUSION AND FUTURE WORK 

 

The optimal properties of kriging make it the gridding method of choice for visual examination of the functional 

relationships between observed satellite brightness and the viewing geometry, principally solar phase angle and solar 

declination angle.  Examination of a trial dataset argued for the use of a second-degree fitting function, which 

performed well in terms both of visual matches to the krigged data and reasonable error statistics.  The including of 

solar declination angle as an independent variable was seen as essential, as it affects the observed brightness more 

profoundly and more frequently than the conventionally-embraced solar phase angle.  Fit behavior did not differ 

drastically between the data-sourced and krig-grid-sourced fits; but although space limitations for this paper did not 

permit presentation of some typical cases, it was observed as part of the analysis that the fits from krigged gridding 

data avoided extreme behavior at the edges of the fit-space and were thus the preferred solution.  Quadric surface 

fits to the krigged data grid are thus the recommended procedure for future releases of the VM SATCAT. 

 

One kirging data product that was not examined as part of this analysis is the set of error variances that can be 

calculated for each gridding point, primarily because the Origin kriging product did not export these data.  However, 

if kriging is used as part of the VM SATCAT, these error variance data will be used at the least to produce for each 

satellite an error model to use in conjunction with the brightness model, allowing a regionalized rather than merely 

global error estimate.  Another possibility is to maintain a database of krigged grid points and error variances, 

allowing direct interpolation of these data to predict brightness (and variance) for a particular viewing geometry. 

 

Finally, some re-validation of the above will be necessary when plentiful DEEP STARE data are available.  Ground-

based sensors tend to produce more persistent and exaggerated glint responses, and the adequacy of the second 

degree model may need to be re-evaluated. 
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