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IMPROVED RADAR CROSS-SECTION “TARGET TYPING” FOR 
SPACECRAFT 

M.D. Hejduk*

Statistical histories of radar cross-section (RCS) data of satellites are used wide-
ly, both for the main application of tracking radar optimization and for tangen-
tial uses such as satellite characterization, size estimation, and observation corre-
lation.  The Swerling target typing models, however, have not evolved since 
1954, when Peter Swerling’s two chi-squared PDFs, based on the examination 
of aircraft data, were first proposed.  In an earlier restricted paper only recently 
published, Swerling repudiated his previous position and advocated a broader 
set of types, which included additional chi-squared forms and the lognormal dis-
tribution.  Other recent studies also support the use of lognormal distributions, 
suggesting that a systematic investigation of target typing for spacecraft is in or-
der. 

 

Hit-level RCS histories from the Eglin FPS-85 spacetrack radar on over 8000 
objects were obtained and, after appropriate filtering, were examined with the 
empirical distribution function (EDF) goodness-of-fit technique to determine 
conformity to the classical two Swerling target type models, an expanded set of 
chi-squared models including Swerling’s own recommendations and other 
promising variants, and the lognormal distribution.  The results revealed that, 
contrary to the author’s expectations, the traditional Swerling types fared rea-
sonably well, adequately representing some 35% of the objects; and the addition 
of the expanded chi-squared types increased this number to 46%.  The lognor-
mal distribution can provide about the same marginal gain, accounting uniquely 
for about 10% of the objects tested; but its solo performance against the entire 
dataset reached only the 25% figure, indicating that it in no way is a good re-
placement candidate for the traditional Swerling types.  Future research should 
thus focus on the some 42% of objects that cannot be represented by any one the 
chi-squared or lognormal distributions to determine whether a new canonical 
distribution type should be introduced. 

INTRODUCTION AND HISTORY 

There are a number of reasons to wish to know the probability density function (PDF) of the 
radar cross-section (RCS) of a space object.  The best known and most common application is to 
determine the amount of power that a radar must expend in tracking the object in order to achieve 
a desired probability of detection.  Such a consideration is especially import for phased-array ra-
dars, which can track many targets simultaneously; applying the correct amount of power allows 
all attempted targets to be acquired and maximizes the number of targets that can be simulta-
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neously kept under track.  However, in addition to this more classical application, additional uses 
have also arisen.  Size estimates of satellites from signature data (such as RCS) are becoming in-
creasingly common, and to improve fidelity these estimates require consideration of the signa-
ture’s PDF.  Additionally, the signature PDF is being examined for satellite characterization pur-
poses, to include the determination of satellite object type (e.g., payload, rocket body, debris) and 
the inference of a satellite configuration change by observing a change in the PDF.  An under-
standing of the canonical RCS PDF types—if indeed canonical types truly exist—is an important 
prerequisite to these applications. 

 In 1954 Peter Swerling completed a RAND Corporation report (which in 1960 was pub-
lished as an IRE article) that, as part of outlining probability-of-detection calculation approaches 
for tracking radars, addressed the question of the expected RCS PDFs that these radars would 
encounter.1,2  In the absence of significant observational data, Swerling deployed the following a 
priori reasoning to develop canonical RCS PDF forms: 

1) A target type that is a collection of small scatterers of approximately equal areas will 
create a Rayleigh scattering pattern and thus produce a RCS PDF that follows a Rayleigh 
distribution, the familiar exponential pattern.  Rather than describe it as an exponential 
decay, for reasons that will be clearer below Swerling chose to frame it as a chi-squared 
distribution with two degrees of freedom (which is the same as a gamma distribution with 
a shape parameter of 1).  He further chose to make a distinction between slowly-changing 
cases in which there was RCS correlation pulse to pulse and quickly-changing cases in 
which correlation was observed only scan to scan.  These two types—in which an expo-
nential RCS PDF is expected and the additional difference is only in the expected correla-
tion between pulses—constitute the Swerling I and II target fluctuation models. 

2) A target that is a combination of large and small scatterers shows a combination of 
Rayleigh scattering and more systematic effects.  For this case Swerling proposed a chi-
squared distribution with four degrees of freedom:  an evolution of the Rayleigh case but 
with the bounded “hump” appearance, not dissimilar to the typical PDF of a lognormal 
distribution.  There was no specific mathematical reason to promote this particular distri-
bution as the natural representative for this case other than the heuristic argument of an 
“evolved” chi-squared distribution.  Swerling applied the same additional distinction be-
tween pulse-to-pulse versus scan-to-scan correlation, and this particular case became the 
Swerling III and IV models. 

3) A target that shows no RCS dependence on target aspect, such as a calibration 
sphere, constitutes a non-fluctuating case and yields a symmetric PDF (sometimes called 
a Swerling 0 or Swerling V case).  To remain consistent with the above paradigm, Swerl-
ing described this case as a chi-squared distribution with infinite degrees of freedom, 
which reduces to the standard normal distribution. 

This collection of target types, which actually comprises only three different PDFs, quickly 
became canonical in radar theory and design for nearly all radar applications, despite its devel-
opment in the 1950’s when nearly all radar applications were for aircraft and ship tracking.  To 
this author’s knowledge, it has never been rigorously verified for spacecraft.  But perhaps most 
injurious to its canonical status is Swerling’s own “repudiation” of the adequacy of his two mod-
els and pursuit of additional target types in order to assemble a more complete portfolio.  These 
particular developments have passed largely unobserved by the discipline, primarily due to their 
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being documented in private reports and restricted conference proceedings before finally appear-
ing in a trade journal in 1997.3,4,5*

Two general realizations thus emerge from the above discussion.  First, it may well be neces-
sary to expand the canonical target type repertoire beyond the two main models given in Swerl-
ing’s 1954 report; and second, in addition to merely a proliferation of additional chi-squared 
PDFs the lognormal distribution should also be considered as a type that may provide better 
matching to certain classes of targets.  A specialized investigation is thus required two consider 
these two issues in the context of tracking data on spacecraft, a broad and considerable applica-
tion of radar technology for which the particular issue of target typing has never been fully inves-
tigated.  An additional consideration that would be helpful for such a study effort to address is 
whether any a priori knowledge about the target, such as its spacecraft object type (payload, 
rocket body, debris), can aid in the initial selection of this increasing set of canonical target types. 

  In these subsequent treatments Swerling recognized the failure 
of the two Swerling models to account for all of the targets encountered.  Among his proposed 
remediations are the adoption of an additional canonical distribution of a chi-squared distribution 
with one degree of freedom (labeled the “Weinstock” distribution after the author of a 1956 un-
published dissertation that argued for it),7 the outlining of a procedure for fits of object-by-object 
RCS empirical PDFs to tailored chi-squared distributions, and—significantly—consideration of 
the use of the lognormal distribution to model target types not well served by the chi-squared 
family.  In this last case, he focuses on a procedure to distinguish when lognormal PDFs can be 
acceptably modeled by curves in the chi-squared family and when they cannot; but among his 
conclusions is the realization that there is a place for the lognormal distribution in fluctuating tar-
get typing.  This contention has received some support from other studies, among them one of 
radar tracking data of mechanized infantry tanks8 and one of a limited study of distilled radar 
tracking data on spacecraft.9 

EVALUATION DATASET 

 The present investigation of the issues outlined in the preceding paragraph is made possi-
ble by the availability of an expansive dataset of individual radar hit data on spacecraft.  The Eg-
lin FPS-85 radar, located at Eglin AFB near Fort Walton Beach, FL, is a high-capacity phased-
array radar that can track as many as 7000 space objects per day in a variety of orbits.  Six 
months of individual radar hit data was made available for the present study.  Hit data were win-
nowed by further requirements that the assigned satellite tag be properly assigned and that each 
hit participate in a metric observation formation process with a favorable resultant covariance.  
Object RCS hit histories were used only if more than 1000 hit data points were available for that 
object.  The application of these additional criteria produced 8605 objects’ worth of hit histories 
for the present study, with a total data volume of some 20 million radar hits.  Throughout the 
study, the dataset was often divided by object type:  active and inactive payloads (1828), rocket 
bodies (1097), and debris objects (5302). 

TARGET TYPES DEFINED 

Swerling chose to define target types with reference to the chi-squared distribution, but its 
more general form is the three-parameter gamma distribution, given below: 

 

                                                      
* A very helpful literature survey on the issue of radar target typing is provided in Reference 6. 
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In this formulation m is the shape parameter, which governs the overall appearance of the PDF 
and thus the type of gamma distribution one is employing.  If m is an integer, the doubling of m 
indicates the number of degrees of freedom of the distribution if one wishes to consider it to be a 
chi-squared distribution.  β is the scale parameter, for which the maximum likelihood estimator 
(MLE) is m divided by the sample mean.  γ is the location parameter for this distribution and is 
set to zero for simplicity of parameter estimation.*

 Which “additional” gamma target types should be included in the present broader inves-
tigation of target typing?  One way to bound the problem is to examine each object’s hit history 
and estimate the m-parameter for a two-parameter gamma distribution.  The ability to estimate the 
m-parameter does not guarantee that the dataset will actually be well-represented by a gamma 
distribution with that shape parameter; but it does mean that if it indeed is well-represented by a 
gamma distribution, it will be a gamma distribution with a shape parameter close to the one esti-
mated. 

  For a typical target type application, m would 
be chosen a priori or from the examination of the sample under consideration, β would be esti-
mated using the MLE approach given above, and the properly-scaled RCS PDF would thus be 
available for subsequent calculations or applications. 

 At least the above would be true if the m-parameter could be reliably estimated, but one 
problem that plagues the use of the gamma distribution is difficulties in the efficient and reliable 
estimation of parameters.  Moment estimators (MM) are the time-honored method of parameter 
estimation introduced by Karl Pearson, who included the gamma distribution as part of his Type 
III collection of frequency distributions.  They are calculated by equating the distribution mo-
ments to estimators of the sample moments; but since sampling errors can often be magnified in 
the third sample moment (because of this moment’s requiring the calculation of the cube of the 
difference between each data point and the sample mean), these large errors can be propagated 
into the estimated distribution parameters.10  Maximum likelihood estimation (MLE) contains in 
principle many of the general virtues of maximum likelihood, but in the particular case of the 
gamma distribution it miscarries of necessity when the true m is less than 1 and will generally 
produce instabilities if the estimated m is simply near 1.  Some authors recommend avoiding 
MLE unless the true m is believed to be greater than a much larger value, such as 2.5.11  The Co-
hen-Whitten modified moment technique (MME), which modifies the moment estimators through 
the use of the first-order statistic, is also available, although like MLE it is subject to some restric-
tions in its application.10  One advantage to the use of the two-parameter lognormal distribution, 
and thus yet another reason to determine whether it could serve as a wholesale replacement of the 
chi-squared family, is that parameter estimation is stable and greatly simplified:  after a change of 
variable to re-express the dataset in logarithm space (dBsm), one simply computes the sample 
mean and variance for a normal distribution.  If the RCS PDFs of many objects can be adequately 

                                                      
* The proper setting of the location parameter of the gamma distribution is a vexing problem that greatly complicates 
parameter estimation, hence the desire simply to render it as zero.  This simplification becomes less realistic as the size 
of the object increases and advances the candidacy of the lognormal distribution in that, once the change of variable is 
made, parameter estimation of the mean and variance of the resulting (presumed) normal distribution is straightforward 
and unproblematic. 
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represented by the lognormal distribution, then this may be an overall superior paradigm.  These 
two curve families can often produce very similar behavior, as shown in Figure 1 below. 
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Figure 1.  Example Comparison between Gamma and Lognormal Distributions 

 

Figure 2 below gives a CDF plot of the estimated m for all 8600 objects in the present study, 
estimated by the three approaches described above.  The propensity of the MM approach to pro-
duce very large m-estimates is obvious enough, and the disagreement between MLE and MME 
for the smaller values of m is apparent also.  However, the two more reliable approaches (MLE 
and MME) both show that about 90% of the cases are adequately covered by shape parameters 
smaller than 3.  To cover this range and to include both the canonical forms and the additional 
ones specifically called for by Swerling in his later work, a consideration of gamma PDFs in m-
increments of 0.5, from a range of 0.5 to 2.5, should be adequate.   
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Figure 2.  CDF of Estimates of Gamma-distribution m-Parameter 
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One wishes to include the lognormal distribution in the survey in a manner that can determine 
with some definiteness whether it should play a role in target typing for spacecraft.  The most 
generous way to do this is to allow the analytical software to estimate the sample mean and va-
riance of each data sample in attempting to fit a normal distribution (in log space) to each.  This 
method of comparison in a way favors the lognormal distribution because it allows two parame-
ters to be estimated, whereas the gamma distribution target typing allows only one to be estimated 
(because m is given a priori for each target type).  However, if the lognormal distribution is com-
pared to the entire battery of gamma distributions (shape parameters from 0.5 to 2.5), then the 
comparison is reasonably unbiased if it is believed that this distribution span truly covers most of 
the encountered target types.  Table 1 below gives a summary of the different types of distribu-
tions thus to be considered in the present study, and Figure 3 (also below) shows representative 
plots of the six distributions under consideration.  The two Swerling canonical types are shown 
with dashed lines. 

 
Table 1.  Distributions to be Investigated 

Abbreviation Type Common Name m-value 

S0.5 gamma Weinstock 0.5 

S1 gamma Swerling I, II 1 

S1.5 gamma none 1.5 

S2 gamma Swerling III, IV 2 

S2.5 gamma none 2.5 

Log lognormal none n/a 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

 

 
S0.5
S1
S1.5
S2
S2.5
Log

 
Figure 3.  Representative CDFs of the Six Target Types under Investigation 
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GOODNESS-OF-FIT TESTING APPROACH 

Most goodness-of-fit approaches are based on what is called a “weak-hypothesis” test in that 
one sets the null hypothesis to the desired outcome—that the sample conform to the hypothesized 
distribution—and rejects this only if goodness-of-fit testing assesses its likelihood to be below a 
threshold significance level.  For example, suppose one wishes to establish whether a certain data 
set conforms to a Gaussian distribution.  The procedure is to begin with the assumption that it in 
fact does conform to a Gaussian distribution.  A goodness-of-fit test is then run to determine the 
likelihood that the dataset, with its particular statistical properties, could have been drawn from a 
population that conformed to a Gaussian distribution.  If this likelihood is below a certain signi-
ficance level (5% is a typical figure), then the null hypothesis is rejected, forcing the conclusion 
that the sample is not in fact Gaussian.  The weak-hypothesis approach is often criticized as being 
too permissive; in the present case, a 6% chance that the sample could have been drawn from a 
Gaussian population would result in the retention of the null hypothesis and thus the conclusion 
that the sample is in fact Gaussian—not a conclusion of overwhelming strength.  However, the 
goal of such testing often is not to establish definitively the parent population of a given sample 
but simply an adequate statistical model to describe the sample.  This is in fact the purpose for the 
present application, and to this end weak-hypothesis testing is quite adequate.  Furthermore, it is 
often used because there is really no other viable procedure for assessing goodness-of-fit in the 
general case. 

Many specialty goodness-of-fit tests have been developed for particular distributions, espe-
cially the normal (Gaussian), exponential, and uniform.  In the present case, it is necessary to test 
for conformity to both gamma and lognormal distributions; and as there are not (to this author’s 
knowledge) any specialty tests for the gamma distribution, it is best to select a general technique 
that can be applied to both distributions, allowing for a more direct comparison of results.  There 
are two mainstream techniques suitable for this:  chi-squared and empirical distribution function 
(EDF) approaches.  The Pearson chi-squared approach has a grand history in statistical inference; 
the earliest goodness-of-fit test, it has proven both reliable and versatile over the hundred years of 
its use.  However, since the middle of this last century it has come under increased scrutiny and 
subjected to numerous analyses of its power; and these investigations have concluded that in 
nearly every case it is outperformed by specialty tests and alternative techniques, such as the 
EDF.12  Its weakness is due primarily to the fact that continuous data must be divided up into 
“bins” in order to run the test, and this division masks additional information about the distribu-
tion that other techniques can exploit.  If the data sample is already divided into discrete bins, 
then use of the chi-squared approach is often desirable; but if the data are continuous, a signifi-
cant arbitrariness in introduced by the imposed binning—altering the resultant significance level 
by factors of 2 or 3 is not uncommon.  Thus, for the case of continuous data, the literature strong-
ly recommends the choice of a specialty test or EDF technique.  Since the EDF approach can ac-
commodate both the gamma and lognormal distributions, it is selected here as the preferred ap-
proach. 

The EDF technique proceeds by computing a cumulative distribution function (CDF) empiri-
cally from the sample data and comparing this to the CDF of the hypothesized distribution.  The 
two curves will never match exactly, but EDF techniques establish methods for evaluating the 
differences between these two curves and transforming these evaluations into significance levels, 
which give the likelihood that the sample is drawn from the hypothesized distribution.  The graph 
below shows an empirical CDF (ECDF) constructed from 2000 hit RCS values for a randomly-
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chosen satellite on the same graph as the CDF for a normal distribution with mean and variance 
estimated from the 2000-hit sample.  The y-axis is cumulative probability. 
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Figure 4.  Comparison Plot of ECDF and CDF of Estimated (normal) Distribution 

 

Two general types of EDF difference-quantification approaches exist:  the supremum set, 
which examine the maximum horizontal and vertical difference between the two curves; and the 
quadratic set, which sum the squares of the differences over the entire curve set.  While both are 
widely used, the quadratic set is generally considered the more powerful and was the one selected 
for the present analysis.  There are three sub-types of quadratic analysis, all three of which are 
described by the general summation formula 

 [ ]∫
∞

∞−

−= dxxxFxFnQ n )()()( 2ψ   (2) 

and differ only in the weighting function ψ that is applied.  The Cramér – von Mises statistic is 
the simplest: 

 1)( =xψ  (3) 

setting ψ simply to unity.  The Anderson-Darling is the most complex, prescribing a function that 
weights data in the tails of the distribution more heavily than those nearer the center: 

 [ ]{ } 1)(1)()( −−= xFxFxψ  (4) 

The Watson statistic is a modification of the Cramér – von Mises statistic to allow evaluation of 
points on a circle and is not relevant to the present investigation.  The Anderson-Darling is gener-
ally considered the most powerful of the three, but it also the most heavily affected by outliers.  
After performing some sensitivity runs with RCS data, it was determined that the Anderson-
Darling statistic was perhaps too exclusive for the present purpose and that a change to the 
Cramér – von Mises statistic was warranted. 
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The general procedure for testing a data sample using the EDF method is as follows.  First, a 
hypothesized distribution is chosen; this choice is generally based on a priori conviction or 
graphical analysis.  Next, parameters are estimated for the distribution.  In the present situation, 
the five gamma distributions each has a fixed m-value, so the only parameter remaining to be es-
timated is the scale parameter β; for the lognormal distribution, both mean and variance (of the 
transformed dataset) are to be estimated.  Once parameters are known, the CDF for the hypothe-
sized distribution can be constructed.  After this, the EDF for the sample, based only on the sam-
ple data, can also be constructed and compared to the CDF of the hypothesized distribution, with 
differences assessed using equation (2) and the expression for ψ appropriate to the test statistic 
being calculated (in the present case, which will use the Cramér – von Mises statistic, ψ will 
equal unity).  Once the test statistic value is known, tables of significance points for this statistic 
are calculated to transform the statistic value into a probability that the sample was derived from 
the hypothesized distribution.  This probability can either be compared to a significance value 
(e.g., 5%) and a binary decision made of whether or not the sample conforms to the hypothesized 
distribution, or it can be examined absolutely to make relative decisions among competing distri-
butions.12 

 The present case presents some special EDF data sampling issues.  Most of the RCS data 
histories used in the present study are tens of thousands of hits in size; and it would seem appro-
priate, although perhaps not computationally efficient, to use these entire data histories as the 
sample to be analyzed.  However, it has been documented that EDF techniques often miscarry 
when sample sizes become large, on the order of several hundred members; this is because even 
small variations between the two CDF curves, if evaluated at every one of a large number of data 
points, become large in the summation.  Thus, some method was necessary to limit the size of 
each sample to be analyzed to about 100 points.  At the same time, it is not desirable to limit the 
sample to a single track; nor would it be representative to choose 100 hits at random and allow 
this to serve as the single sample for an object.  The emergent solution is to use a “bootstrap” re-
sampling technique to choose multiple samples of an acceptable size and aggregate the results.  
For the present investigation, the approach to testing a particular dataset for conformity to a par-
ticular distribution was to test 1000 samples of 100 values drawn at random from the dataset.  
Parameters were estimated not repeatedly from the 100-point samples but once from the entire 
dataset.  Results were evaluated at the 0.02, 0.05, and 0.10 significance levels (“p-values”).  The 
0.05 threshold is a good compromise between what might be thought an excessive permissiveness 
of the 0.02 value and the somewhat demanding 0.10 value; 0.05 is also more widely used as a 
goodness-of-fit threshold, which reinforces its choice here.   
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RESULTS 

The first task is to assess the general adequacy of the two canonical Swerling target types (S1 
and S2, corresponding to Swerling I, II and Swerling III, IV).  Figure 5 below shows the percen-
tage of objects in each class whose RCS history can be adequately described by the S1 type, the 
S2 type, or a combination of S1 and S2 (meaning that at least one of the two types, and possibly 
both, adequately described the RCS history).  The number of compliant cases predictably drops as 
the p-value requirement is increase from 0.02 to 0.05 to finally 0.10, and the decrease is some-
what larger from 0.02 to 0.05 than from 0.05 to 0.10.  The two main Swerling models, taken to-
gether, can account for about 34% of the objects, performing somewhat better for rocket bodies 
than for payloads and debris. 
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Figure 5.  Performance of the Two Main Swerling Models 
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Figure 6 now shows the Swerling models extended in the matter proposed earlier (S0.5 to 
S2.5, with a 0.5 increment in shape parameter).  The overall performance improves from 34% to 
46%—notable but not overwhelming.  The case that stands out as the most helpful is the addition 
of the S1.5 distribution to model rocket bodies, adding about ten percentage points of perfor-
mance to its nearest competitor.  The S0.5 case seems to add very little, but compromises were 
necessary in order to apply the EDF test to this distribution, and the suspicion is that the test is not 
entirely reliable for this case.*
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  One may say in the main that an extended Swerling set of gamma 
distributions can account for about half of the objects in the test set. 

 
Figure 6.  Performance of the Extended Swerling Models 

 

 
                                                      
* The tables of percentile points for assessing the EDF test results for the gamma distribution do not extend to situations 
in which the shape parameter is less than one.  The present study attempted to extrapolate to this case using cubic 
splines, recognizing that this was at best an uncertain practice.  The results appear to have confirmed this uncertainty, 
as one would have expected at least somewhat better performance for this type. 
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About half of the objects thus remain to be fitted to a target type, and the obvious next step is 
to see how the lognormal distribution will fare, comparing its results to the main Swerling types, 
the extended types, and the group of objects that, even after the introduction of the lognormal dis-
tribution, still cannot be assigned to a target type (the “none” column, conceptually an opposite of 
the “all” column in Figure 6).  It should be remembered that for the lognormal case, the two go-
verning parameters of this distribution (mean and variance) were estimated for each object, so the 
chances of finding an acceptable lognormal distribution in any given case are greater than for the 
applicability of a standard target type.  Figure 7 below gives the results.  The lognormal distribu-
tion compares favorably with the S1 and S2 models taken together for the payload and rocket 
body cases but notably underperforms in the debris case.  Given that the number of unassigned 
objects comes in at a little over 40%, the addition of the lognormal distribution was thus able to 
improve the situation by only ten to fifteen additional percentage points—not nearly the im-
provement that was hoped. 
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Figure 7:  Results with Addition of Lognormal Distribution 
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Finally, one wishes to isolate the particular improvements that the introduction of the lognormal 
distribution actually brought.  Figure 8 attempts to isolate any such improvements by separately 
representing cases in which the gamma-distribution models characterize the distribution but the 
lognormal does not, and vice versa.  Since the bar-graph group labels may be somewhat confus-
ing, Table 2 below gives a prose amplification. 

Table 2.  Explanation of Bar Cluster Definitions in Figure 8 

Notation Gloss 

(S1 or S2) & ~Log Either S1 or S2 (or both) passes, but Log does not 

(S0.5 – S2.5) & ~Log At least one of the distributions in the set S0.5 to S2.5 passes, but Log 
does not 

Log & ~(S1 or S2) Log passes, but neither S1 nor S2 does 

Log & ~(S0.5 – S2.5) Log passes, but none of the distributions in the S0.5 to S2.5 set does 
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Figure 8.  Chi-Squared and Lognormal Unique Contributions 
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One observes that about 23% of the objects can be modeled by either S1 or S2 that cannot be 
modeled by a lognormal distribution.  About 15%, conversely, can be modeled by the lognormal 
case that cannot be accommodated by the S1-S2 combination.  If one examines the expanded 
gamma distribution family to the full S0.5-S2.5, then about 30% of the objects can be handled 
that cannot be modeled at all by the lognormal distribution, and only 10% can be modeled only 
by lognormal.  A similar phenomenon is observable across all three object types.  For payloads 
and rocket bodies, the lognormal distribution is competitive with the S1-S2 combination but infe-
rior to the S0.5-S2.5 combination; for debris, the lognormal distribution is substantially inferior to 
either the S1-S2 or the full S0.5-S2.5 combination.  This last result is not entirely surprising, as 
debris objects are more irregularly shaped and are thus more likely to produce a Rayleigh or qua-
si-Rayleigh RCS distribution; but the difference is more marked than this author expected. 

CONCLUSION AND FUTURE WORK 

The research hypothesis, or perhaps more accurately the research hope, was that the lognor-
mal distribution would be at the least competitive with, and perhaps superior to, the gamma dis-
tribution family for the purposes of spacecraft target typing; such a result would have allowed the 
substitution of a set of lognormal target types, facilitating parameter estimation and bringing 
many of the other favorable properties of the normal distribution.  The present analysis clearly 
shows, however, that such a substitution is not warranted.  It will be recalled that the lognormal 
distribution was given a certain advantage in this analysis by allowing both location and scale 
parameters (mean and variance) to be estimated from the sample; so if it merely achieves perfor-
mance parity with the S1-S2 combination, it in fact underperforms because to make the lognor-
mal distribution into actual target types, fixed variance values would need to be assigned.  The 
underperformance is quite significant with debris objects, which may be the most important ob-
ject class to consider because of its much greater object count and generally smaller object size; 
radars will struggle the most in tracking this object class, so the broad target typing paradigm 
should work to accommodate this class as its priority.  It is true that about 10% of the objects are 
well modeled by the lognormal distribution and not well modeled at all by the gamma distribu-
tions, but one would need to consider whether it makes sense to introduce an entire new target 
typing distribution, and define specific target types within that distribution by establishing canon-
ical variances, to serve a relatively small additional number of objects.  Before taking so bold a 
step, one should examine the some 40% of the remaining objects that failed to fit either of these 
distributions (chi-squared or lognormal) to determine whether yet a third distribution type may 
account for a larger percentage, and perhaps a substantially larger one.  In the absence of this ad-
ditional work, the recommendation must be to leave the current Swerling target typing arrange-
ment in place, inadequate though it may be for some applications. 

If a minor repair is desired, then one could consider adding the S1.5 target type to the mix.  
Of the three non-canonical types considered in the S0.5-S2.5 set, this type appeared to make the 
greatest contribution.  However, it must be remembered that testing for the Weinstock case (S0.5) 
was suspect, and Swerling thought that this additional type showed the most promise.  It would 
seem ill-advised to make any changes until a more thorough investigation has been undertaken. 

The first step in such an investigation, is to examine the four Pearson moments (especially the 
third and fourth moment) and associated histograms for the 40% of objects that do not conform to 
either the gamma or lognormal target types to see what can be learnt about their general behavior 
and whether they suggest the introduction of another standard distribution to model them.  Such 
results will govern whether it is believed that the Swerling models and their natural extensions are 
about as far as one can go with a priori target types or whether there are other natural distribu-
tions to be found within the data that can profitably extend the target typing enterprise. 
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