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 A study presented last year revealed that the standard target type models used for 

power allocation by spacetrack radars—namely, the Swerling models, which are two specific 

forms of the two-parameter gamma distribution—are actually not particularly 

representative of the radar cross-section (RCS) histories of actual space objects; they in fact 

could account for only 35% of the objects in a typical operational sample.  The present study 

re-examines this result with a more robust dataset and attempts to identify additional model 

candidates to represent the unmodeled remainder, trying two- and three-parameter versions 

of the gamma, Weibull, and lognormal distributions and using rigorous parameter 

estimation and goodness-of-fit tests as validation. 

 This investigation yielded a number of findings.  First, the Swerling I/II distribution 

(Rayleigh distribution) performs surprisingly poorly, suggesting that Rayleigh scattering is 

actually a smaller component of spacetrack radar backscatter than previously believed.  

Second, the introduction of targeted additional gamma distribution models, specifically one 

with a shape parameter of 1.5, improved the modeling notably.  Third, the use of three- 

rather than two-parameter fits, for gamma, Weibull, and lognormal distributions, did not 

appreciably improve the situation beyond that for the two-parameter fits; it is thus 

reasonable to presume that spacecraft RCS history probability density functions begin at the 

origin.  Fourth, only the two-parameter lognormal distribution emerged as a significant 

contender to serve as an additional model; and even then the addition of two specified 

lognormal distributions accounted for only 12% of the overall cases.  Finally, a descriptive 

statistical analysis of the cases that resist representation by the standard distributions 

reveals bimodality, unusual skewed distributions (in dBsm space!), and a minority of 

reasonably well-behaved leptokurtic distributions.  In short, there is no obvious “magic” 

solution or distribution to improve the target type modeling, but some progress could be 

made by introducing one additional gamma distribution and two specific lognormal 

distributions, attempting model matching with a standard leptokurtic distribution (perhaps 

a student’s t-distribution), and developing/deploying an outlier test that does not make the 

assumption of an underlying Gaussian distribution. 

 

 

I.  Introduction 

O operate efficiently in tracking space objects, space radars need to have a reasonable characterization of the 

PDF of the objects’ radar cross-section (RCS) history in order to determine the proper amount of power to apply 

to achieve a desired probability of detection.  Based on Peter Swerling’s early study of aircraft RCS data, two forms 

of the gamma statistical distribution have been presumed as appropriate for spacecraft and guided the software 

development for most space radars:  an exponential distribution (the Swerling I/II type) and an Erlang (chi-square 

with X degrees of freedom) distribution (the Swerling III/IV type).
1
  A study presented last year
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 focused on 

assessing the adequacy of these two distribution types to represent RCS histories for spacecraft and found that, taken 

together, they were able to account for only 35% of a broad sample of space objects.  A proposed replacement of the 

entire Swerling paradigm with a use of the two-parameter lognormal distribution was also investigated and found to 
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be unsuccessful.  The study concluded with a suggestion to try more elaborate versions of the gamma distribution 

family and to investigate other canonical distribution types to see if a more comprehensive distribution set could be 

assembled for spacetrack radars.   

 The present effort attempts to provide this suggested expansion in the following manner.  First, it improves on 

the previous dataset used for the investigation by enforcing a more rigorous radar calibration investigation, retaining 

only those data taken during the most restrictive calibration-compliant periods.  Second, it examines a few natural 

extensions to the Swerling PDF family to determine any increase in comprehensiveness by a controlled proliferation 

of the present canonical distribution type.  Third, it investigates whether using the three-parameter version of the 

Swerling PDF family (Swerling himself limited the distributions to two parameters, setting the location parameter to 

zero) brings any increase in comprehensiveness.  Fourth, it attempts to align the remaining distributions to some 

other suggested types, such as the Weibull and an expanded lognormal, to see if this somewhat expanded repertoire 

can account for the remainder.  Finally, it characterizes these further resistant types with descriptive statistics to help 

to understand their nature and assess their likelihood of being accounted for by any of the standard distributions. 

II.  Dataset 

 The dataset of individual RCS hit values used in the previous study was composed of six months of spacetrack 

data from the Eglin FPS-85 radar, a large, UHF tracking radar located in the Florida panhandle.  This was a quite 

voluminous dataset, consisting of twenty million radar hits taken from September 2008 to March 2009, thus 

including objects generated from the two recent debris-producing events (Chinese ASAT and Iridium-COSMOS 

collision).  Usual site-based calibration controls were in place during the data collection, but subsequent 

maintenance efforts at the Eglin radar have uncovered some problems with the Eglin RCS calibration procedure.  To 

remedy these difficulties and ensure that a well-calibrated dataset was used for this present investigation, results of 

the tracking of RCS calibration satellites were examined (which are tracked routinely throughout each day of Eglin’s 

operation), and the dataset was winnowed to retain only those radar hits taken during periods when all of the 

calibration satellite RCS data remained within 1.5 dBsm of each calibration satellite’s theoretical value.  This 

criterion did reduce the dataset significantly, but enough data remained to allow adequate sampling for the study.  

Table 1 gives the number of space objects, by object type, with sample densities as indicated. 

 

 

Table 1.  Dataset size by object type 

Object # of Radar Hits 

Type > 0 > 200 > 1000 

Payloads 2033 1876 1471 

Rocket Bodies 1362 1143 691 

Debris 8034 6252 3291 

Total 11441 9282 5463 

 

For all of the subsequent analyses, only objects with more than 1000 radar hits were used.  This would typically 

correspond to at least twenty separate tracks, which should give a quite comprehensive survey of the different 

satellite-sensor aspect orientations for each object. 

II.  Existing and Expanded Swerling Types 

Swerling chose to define his target types with reference to the chi-squared distribution, but its more general 

form is the three-parameter gamma distribution PDF, given below: 
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In this formulation m is the shape parameter, which governs the overall appearance of the PDF and thus the type of 

gamma distribution employed.  If m is an integer, the doubling of m indicates the number of degrees of freedom of 

the distribution if one wishes to consider it to be a chi-squared distribution.  β is the scale parameter, for which the 

maximum likelihood estimator (MLE) is the sample mean divided by m.  γ is the location parameter for this 



distribution and was set to zero by Swerling.  In such a case, setting m to 1 produces an exponential (Rayleigh) 

distribution of the form 
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which is the PDF for the Swerling I and II types; and setting m to 2 produces the following Erlang distribution 

 

  







 





x
xxf exp

1
);(

2
 (3) 

 

which is the PDF for the Swerling III and 

IV types.  However, there is no particular 

reason to limit m to integer values; and one 

is led to ask whether there would be an 

advantage to some “intermediate” and 

expanded Swerling types, such as the 

distribution in (1) with m set to 0.5, 1.5, 2.5, 

and perhaps values even larger than 2.5.  

Expanding the Swerling target type set was 

explored at a high level in the previous 

study but not rigorously enough to allow for 

any emerging recommendations.  So the 

first activity here is to evaluate the new 

dataset for conformity to the canonical 

Swerling types and a modest expansion of 

them through the addition of fractional m-

values.  In this paper, the nomenclature 

“S#,” such as S1.5, S2, &c., will be used to 

refer to a gamma distribution with location 

parameter 0 and shape parameter (m) of the 

number given.  Figure 1 gives the gamma 

distribution PDFs for a number of different 

shape parameters, as well as a typical lognormal distribution for comparison. 

 The goodness-of-fit (GOF) evaluation approach is similar that used in the previous study but with some 

necessary expansions; so only an abbreviated description of the basic technique will be given here, while the 

expansions will be treated in somewhat more detail.  Empirical distribution function (EDF) techniques examine the 

difference between the empirical CDF of the actual distribution and the CDF of the hypothesized distribution, sum 

the differences between them, manipulate this summed value into a more robust statistical factor, and compare the 

factor to Monte-Carlo-generated tables of percentile points in order to determine the p-value for which the actual 

distribution could be considered to conform to the hypothesized distribution.  This technique is desirable in the 

present analysis because it can be used to test a number of different distributions under different conditions, and it 

works well when percentile point tables are readily available for the hypothesized distribution and for the particular 

parameters estimated from the sample.  For example, for the Swerling cases given above, the gamma shape 

parameter is given a priori but the scale parameter () is estimated from the sample; a percentile point table for this 

specific situation is required.  However, some of the distributions to be tested, such as the three-parameter gamma, 

Weibull, and lognormal distributions, do not have published tables, so a different approach must be chosen.  

Typically, the approach used is to divide the dataset into two groups, using one for the parameter estimation and 

another for the GOF test; the dataset used for evaluation is thus not the same as that used for estimation, and 

percentile point tables for a fully-specified distribution (no parameters estimated) can be employed.  The power of 

the test is somewhat diminished under this circumstance, but it is still quite serviceable.
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Figure 1.  Gamma distributions of different shape parameters 
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 Because GOF tests tend to miscarry when applied to very large sample sets, it is common to use a resampling 

approach, testing each sample and then noting the number of samples that “pass” the GOF test for a given p-value.  

To investigate the conformity to the canonical and expanded Swerling types, 1000 pairs of 100-point samples 

(without replacement, one for parameter estimation and one for GOF testing) were drawn from the calibration-

winnowed RCS histories for each object, and the percentage of the 1000 samples that met or exceeded a p-value of 

0.05 was noted; and 75% of the samples meeting the p-value was selected as the standard for which one may say 

that the hypothesized distribution reasonably represents the actual distribution.  P-value tables exist for the so-called 

“case 1” of the gamma distribution, in which the location parameter is 0, the shape parameter is dictated a priori, 

and the scale parameter (beta) is estimated from the sample.  Some commentators might consider this p-value to be 

overly restrictive, as p-values of 0.02 or 0.01 are often used; others might consider the 75% threshold to be too 

permissive, as one in four samples would fail to achieve the desired p-value.  To the present authors, the 

combination of this slightly-demanding p-value and slightly-permissive percent-of-samples level seemed a 

reasonable amalgamation. 

 A selected presentation of the 

results is given in Figure 2.  The figure 

shows the number of satellites for 

which 75% of the samples achieved a 

p-value of 0.05 when tested against the 

shown distribution.  The “higher” 

Swerling distributions of shape 

parameters three or greater made only a 

marginal contribution and are thus not 

shown here. 

 A number of interesting items 

emerge from these results.  First, it is 

surprising that the S1 case, which 

represents the Swerling I and II 

distributions and is the darling of the 

traditional target-typing family, fares 

relatively poorly, accounting for only 

10% of the cases—one-third of what 

the S2 distribution (Swerling III and 

IV) can accomplish.  This implies that 

satellites, whether they be intact 

spacecraft with sharp edges and booms 

or irregularly shaped pieces of debris, do not exhibit the random scattering described by a Rayleigh distribution; the 

systematic effects of smoother, more continuous facets predominate.  Second, the intermediate case of S1.5 accounts 

for about 12.5% of the tested objects and about 20% of the rocket bodies and debris—well more than the S1 

distribution.  Adding the S2.5 distribution, however, accommodates only about another 5% of the objects; and the 

expanded Swerling types with larger shape parameters accommodate even less.  The S1.5 distribution thus seems to 

be a neglected contributor.  For spacetrack radars that already use the Swerling models and thus perform gamma-

distribution GOF tests, it is clear that the addition of the S1.5 distribution would be a straightforward and helpful 

addition.  With such a distribution added, the Swerling family can be said to account for a little over half of the 

space objects sampled, although it is important to point out that they represent only about one-third of the intact 

payloads but almost 60% of the debris.  Regardless, it is clear that the Swerling family, at least as sampled here, still 

leaves almost half of the space objects unmodeled. 

III.  Broader Range of Gamma Shape Parameter 

 One potential approach to modeling these objects that cannot be represented by the S1-S2 expanded Swerling 

set is simply to continue to expand the set through a full range of gamma distribution shape parameters.  

Approximately 2600 objects in the sample set did not meet the GOF threshold for the S1-S1.5-S2 distributions; this 

group of satellites was thus evaluated against full-range run two-parameter gamma distribution parameter estimation 

and then the appropriate GOF tests.  Four hundred and seventy-seven objects met the GOF standard (75% of 

samples achieving a 0.05 p-value), about 18% of this group.  Figure 3 gives a CDF plot of the shape parameters (m-

values) for this set of objects.  One observes that there are few successful cases below m-values of 2.25 or so, as 

 
 

Figure 2.  Swerling-type distribution GOF test results 
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these tend to be represented 

adequately by the S1, S1.5, and S2 

distributions; but after that the 

representation increases more rapidly 

until an m-value of about 4 or so, at 

which point the curve starts to flatten.  

From this graph, one can see that 

about 60% of the cases are contained 

between m-values of 2.5 and 4, and 

perhaps 75% of them could be 

represented by a collection of S2.5, 

S3, S3.5, and S4 distributions.  Adding 

these four distribution types would 

properly account for 200 more 

satellites; and while every little bit 

could be considered helpful, this is a 

relatively small marginal gain for 

introducing four new distribution 

types:  The S2 type alone accounted 

for 28% of the entire sample, whereas 

S2.5-S4 would account for only about 

4%. 

 

IV.  Three- versus Two-Parameter Gamma Distributions 

 Swerling postulated that any RCS history PDF would begin at the origin, presumably because he believed that a 

random-scattering component would always be a notable contributor to the overall scattering function.  This would 

explain his embrace of the Rayleigh distribution, in which all of the radar return is small-component scattering, and 

the Erlang distribution, which could be seen as a “dilution” of the Rayleigh distribution by including the systematic 

effects of larger, more continuous facets.  However, if the facets are large and continuous enough, it is quite possible 

that the PDF will not in fact tend towards the origin but instead seek out  some non-zero positive value; this value 

would represent the minimum RCS that the more regular, smoother object would produce.  An a priori commitment 

to Swerling’s Rayleigh-scattering conviction, combined with the difficulty of performing parameter estimation for 

the three-parameter gamma 

distribution, have kept this form of the 

distribution from consideration.   

 The set of cases not adequately 

modeled by the S1-S2 distributions 

were fitted for three-parameter 

Gamma distributions using the 

Cohen-Whitten modified moment 

estimator technique, an approach 

more resistant to third-moment 

sampling errors and more stable than 

the iterative solutions required to 

perform MLE estimates.  With these 

estimated parameters, 73 objects met 

the GOF criteria for the three-

parameter gamma distribution while 

not meeting the criteria for the two-

parameter gamma distribution.  Figure 

4 gives a CDF of the mean location 

parameter for these objects. 

 About 70% of the location 

parameters are less than zero, 

 
 

Figure 3.  Estimated shape parameters for full-range two-

parameter gamma distribution exploration. 
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Figure 4.  Estimated location parameters for three-parameter 

gamma distribution. 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

60

70

80

90

100

Location Parameter

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e



specifying a distribution set that is physically impossible for radar returns (as no object can have an RCS less than 

zero); in such cases, one would in practice set the location parameter to zero and re-estimate the two remaining 

parameters, which is in effect a return to the two-parameter situation.  The remaining 30%, for which the location 

parameter is greater than zero, could be modeled by the three-parameter estimate; but it represents such a small 

number of objects (0.4% of the entire sample) that it is not worth pursuing or characterizing further. 

V.  Three-Parameter Weibull Distribution 

 Some studies have suggested that the Weibull distribution can serve as a useful PDF to represent the RCS 

histories of certain object types.
5
  A test for the three-parameter Weibull distribution, whose PDF is of the form 
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was performed for all objects not 

modeled by the S1-S1.5-S2 set, using 

Cohen-Whitten parameter estimation 

and the same GOF approach described 

previously; and objects were culled who 

met the 75%/0.05 percentile/p-value 

standard when either the 2- or 3-

parameter gamma did not.  One hundred 

seven cases met this criterion, but only 

nine of them had positive location 

parameters, making the Weibull 

distribution an insignificant contributor.  

To satisfy research curiosity, however, 

the shape parameters for these nine 

cases were examined and are plotted in 

Figure 5. 

 It is interesting that such cases 

manifest shape parameters very close to 

unity, making them quite similar to the 

exponential (S1) distribution.  The 

exponent on the Weibull distribution’s 

exponential term must alter the PDF enough to allow a somewhat better fit than the S1 distribution. 

VI.  Lognormal Distribution 

 The lognormal distribution is, of course, the principal alternative to the gamma-based Swerling set.  It was 

examined as a contender in the previous study, with the findings that 1) it could not serve as a replacement for the 

gamma distribution and 2) it could account for only 10% of the overall examination sample that could not be 

modeled by the S1 and S2 distributions.  However, the present analysis brings a more reliable dataset, and it tested 

explicitly for the three-parameter lognormal distribution rather than presuming that the lognormal location parameter 

would be always zero.  A good place to begin is an examination of the performance of the three-parameter versus 

two-parameter case. 

 The parameter estimation approaches differ substantially between these two cases.  The two-parameter 

approach is extremely simple and stable:  one performs a log-transform of the data and then simply calculates the 

mean and standard deviation.  The three-parameter estimation approach must choose among Pearson moment 

estimators, which are notoriously inaccurate; maximum likelihood estimators, which are notoriously unstable; or 

modified-moment estimators, which are more accurate than moment estimates and more stable than MLE but still 

subject to the problems of both.  Modified moment estimators were selected for use here; but given that their 

approach differs from MLE, one expects to get different estimates for the case in which the location parameter is 

close to zero than if one simply took the log transform and estimated normal distribution parameters.  

 
 

Figure 5.  Location parameters for three-parameter Weibull 

distributions that represent realistic RCS situations 
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 Figure 6 shows, for the 

satellites that cannot be adequately 

represented by the S1, S1.5, and S2 

distributions, the performance of 

the two- and three-parameter 

lognormal distributions.  It is clear 

right away that very few satellites 

produce realistic three-parameter 

lognormal results (that is, with a 

location parameter that is positive.  

Overall, about 50% of the non-

Swerling cases appear to be 

representable by a lognormal 

distribution, which is about 25% of 

the total samples; this is a more 

encouraging result than that which 

was obtained in the previous study, 

which reported only around 13% of 

the cases being so situated.  Of 

course, both analyses allowed both 

parameters (mean and variance) of 

the lognormal distribution to be 

estimated; in order to make the distribution suitable for radar use, certain fixed values of the scale parameter will 

need to be determined. 

 To help to determine what these should be, Figure 7 below gives a CDF plot of the standard deviations (square 

root of the variances) observed.  The majority of the objects (60% of them) produce a standard deviation between 

0.8 and 1.2.  It is expected that using two lognormal distributions, one with a 0.9 standard deviation and one with a 

1.1 standard deviation (corresponding essentially to variances of 0.8 and 1.2), would adequately model these 60%—

representing about 12% of the total.  

Interestingly, even though admittedly 

the full range of possible lognormal 

distributions has been narrowed down to 

two, one has returned to the 10-13% 

figure from the previous study.  One 

should further consider whether a 

distribution should be added that can 

account for only 6% or so of the total 

objects surveyed.   

 The “Neither but …” column from 

Figure 6 indicates situations in which a 

lognormal distribution (of any variance) 

failed to represent the object but some 

other non-Swerling distribution, such as 

a large-shape-parameter gamma or 

Weibull, did.  The sum of this column 

and the “Either” column is about 70%, 

indicating that 30% of the non-Swerling 

objects, which is about 15% of the total 

sample, cannot be said to conform to 

any of the distributions tested.  It is 

about this set that one should like to 

know more. 

 

 

 
 

Figure 6.  Two and three-parameter lognormal results 
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Figure 7.  Standard deviations for successful lognormal fits 

(Gaussian fits in dBsm space) 
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VII.  Non-Canonical Distribution Cases 

 To understand these objects’ 

RCS histories, it makes sense to 

begin with standard descriptive 

statistics.  The examination takes 

place in dBsm space, since the 

impossibility of negative RCS 

values in meters-squared space 

virtually guarantees skewed 

distributions in that reference 

frame.  The descriptive statistics 

that will yield the most immediate 

information about the distributions 

are the standardized third and 

fourth Pearson moments, usually 

called the skewness and kurtosis.  

The skewness is a measure of the 

symmetry of the distribution.  A 

perfectly symmetric distribution 

will have a skewness value of zero; 

a skewed distribution will have a 

large positive or negative value, 

depending on which half-plane 

contains the distribution’s tail.  

Typically, skewness values of less than 0.5 (absolute value) are said to define symmetric distributions. 

 Figure 8, a CDF of the skewness results for the non-canonical-distribution cases, gives several interesting 

results.  First, the most symmetrical distributions belong to rocket bodies; about 70% of the cases fall within the -0.5 

to 0.5 range in skewness.  Payloads are second with 60% of the cases in that range.  Debris is a noticeable third with 

40%.  The usual thinking has been that debris objects, especially those resulting from on-orbit fragmentation, would 

be of irregular and multi-faceted shape and thus present a more symmetrical response about the mean value, but that 

is not what is observed here. 

 Kurtosis is a measure of the “peakedness” of a distribution, with a low value (less than 3) indicating a rounded 

appearance with short tails (“platykurtic”) and a high value (greater than 3) indicating a peaked appearance with 

long tails (“leptokurtic”).  These descriptions have less intuitive meaning when the distribution is not symmetric, 

since there is correlation between large skewness values and large kurtosis values.  Figure 9 gives the kurtosis CDF 

for the symmetric (left side) and asymmetric (right side) cases. 

 

 
 

Figure 8.  Skewness results for the non-canonical cases 
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Figure 9.  Kurtosis results for the symmetric (left graph) and asymmetric (right graph) cases. 
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 The left graph shows that the great majority of the cases are leptokurtic (large kurtosis value), even when only 

the symmetric distributions are considered; the asymmetric cases (right graph) show the expected leptokurtoses.  In 

order to understand the particular situations presented by the combinations of skewness and kurtosis values, 

individual cases were examined; and some heuristic categorizations and conclusions were reached based on this 

examination.  The main division will be between symmetric and asymmetric cases, with subdivisions within each 

based on kurtosis value. 

 Of the symmetric cases, about one-third (12% of the entire set) are also platykurtic; for RCS histories, nearly all 

of these are bimodal; and as the kurtosis increases to three, the bimodality becomes weaker.  The two graphs in 

Figure 10 show a strongly bimodal case (k=1.8) and a weaker one (k=2.6).  As one can see, these distributions are 

not really symmetric; rather, their bimodality is such that they happen to bring about a symmetric skewness value. 

 The remaining two-thirds (25% of whole sample) are leptokurtic; as the kurtosis increases, they proceed 

through an “inequality” phase, to a classic leptokurtic phase, to a “detritus” phase, to an extreme leptokurtic phase.  

Figure 11 shows these four states, clockwise from upper left.  The first (k=3.96) is an extreme version of the 

dampened bimodality of the previous figure; the second (k=4.57) is a more traditional leptokurtic case; the third 

(k=5.32) is much like the second but with some outliers that are raising the kurtosis value; and the fourth (k=12.15) 

is an extreme leptokurtic distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 10.  Symmetric platykurtic cases exhibiting two different strains of bimodality 
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For the asymmetric cases, when the kurtosis is less than 

three (about one-sixth of the cases), bimodality is still 

observed; but it is now lopsided enough to produce a 

skewness value that is outside of the threshold.  Figure 12 

gives an example of this situation (sk=-0.69, kurt=2.75). 

 As the kurtosis grows, the observed results depend on 

the degree of skewness and kurtosis.  The different 

possibilities are shown in the collection of graphs in Figure 

13.  Moving clockwise from upper left, one finds the 

beginnings of a right-skewed tail (sk=1.23, kurt=4.67); a 

symmetric, leptokurtic  distribution with a small number of 

polluting outliers, producing extremely large skewness and 

kurtosis values (sk=8.28, kurt=117.42 ); a fairly symmetric 

distribution with a right-skewed tail (sk=0.83, kurt=5376), 

  

  
 

Figure 11.  Symmetric leptokurtic results. 
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Figure 12.  Asymmetric platykurtic case 
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and a fairly symmetric distribution with a left-skewed tail (sk=-0.57, kurt=6.07).  In the second graph of this figure, 

it is reasonable to conclude that an outlier is present; and perhaps with a properly-crafted specialty test this situation 

could be identified and the RCS history reprocessed (actually a non-trivial task, given that there is very little theory 

developed for outlier identification for non-Gaussian cases)
6
; the other three situations are likely to resist the 

imposition of any of the canonical distributions.  It is also difficult to generate simple physical explanations for these 

response types. 

VIII.  Conclusions and Recommendations 

 The previous study offered two conclusions:  the S1 and S2 distributions appropriately model only about 35% 

of the space objects, and the lognormal distribution (of any variance set) cannot replace these two distributions.  The 

present aim was to investigate a much broader distribution set to see if a different distribution type could contribute 

significantly to the standing set of models, and to try to gain a better understanding of the situations in which none 

of the typical model types serve as viable contenders.  As part of this investigation, the following specific findings 

and recommendations are offered: 

 

 The S1 distribution, which corresponds to the Swerling I and II types, is actually not very broadly useful or 

representative, modeling only 10% of the objects in the sample set.  Rayleigh scattering is obviously a 

much smaller contributor to the backscatter function than was previously believed.  If only two standard 

models are to be used, there may be other superior choices to this model. 

 One contender for a superior choice is the S1.5 distribution, which is a gamma distribution with location 

parameter 0 and shape parameter 1.5.  This distribution models about 15% of the objects in the sample set.  

If one is looking to add a third to the two standard Swerling model that will improve the situation notably, 

this is the recommended addition:  it is of the same family as the other Swerling models and, if included, 

will extend the overall object representation ability beyond 50%.   

  

  
 

Figure 13.  Asymmetric leptokurtic cases. 
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 Adding additional strains of the two-parameter gamma distribution is an exercise in diminishing return.  

The S2.5 distribution accommodates only about an additional 5% of the sample set objects, and this 

number gets even smaller with each subsequent addition.   

 The three-parameter distributions investigated—gamma, Weibull, and lognormal—did not accommodate 

very many additional objects; many of the parameter estimates produced physically impossible situations, 

and those that did not were small in number.  It thus seems that, when working in meters-squared space, it 

is reasonable to presume that RCS history PDFs begin at the origin. 

 The two-parameter lognormal distribution does have a potential role in RCS history modeling.  However, 

when the variances are fixed in order to define one-parameter lognormal distributions, the two most 

promising distributions would accommodate only an additional 12% of the overall objects, 6% each.  In the 

previous analysis, a threshold of 10% was defined as the point at which adding an additional model brought 

enough added benefit to warrant the addition; that standard is not met here. 

 For the objects that cannot be modeled by any of the standard statistical distributions, about half produce 

symmetric PDFs:  rocket bodies the most symmetric and debris the least.  Nearly all the platykurtic cases 

show some form of bimodality; and, as such, there is little hope of developing a model for these.  The 

leptokurtic cases can be either fairly uncorrupted, symmetric leptokurtic PDFs (the minority) or, more 

commonly, leptokurtic situations corrupted with outliers or skewness.  One might do something to identify 

the cases that conform to a model and try to use a leptokurtic distribution there (such as a student’s t-

distribution), but this effort would be unlikely to bear much fruit.  Similarly, one could apply tests to try to 

remove outliers, allowing the remaining measurements to fit the hypothesized distributions more 

successfully.  However, there is very little outlier exclusion theory developed for non-Gaussian 

distributions. 
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