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ABSTRACT 
 
 Few categorization approaches for satellite photometric response as constructed from individual point-
photometry measurements have been proposed; and as this is the largest and most typical photometry-collection 
approach, the discipline is in need of a taxonomy for the different photometric response types.  The Joint Space 
Operations Center (JSpOC) photometric modeling approach offers an opportunity to define categories of response, 
as it calculates a number of parameters in applying both deterministic and stochastic models in order to predict 
expected satellite brightnesses.  In examining these calculated parameters, a subset show promise in both identifying 
pathological cases and separating the more mainstream response into natural categories.  A successive application of 
four nested tests is proposed in order to place satellites into basic photometric response types. 
 

1.  INTRODUCTION 
 
 The discipline of satellite photometry presently lacks a robust set of categories to use to characterize satellite 
brightness response.  Recent work with satellite light curves, such as that of Payne et al. [1], has demonstrated the 
breadth of different response possibilities and shown them to be represented satisfactorily as functions of solar phase 
angle and solar declination angle (at least for the GEO case); but such work has stopped short of actually developing 
paradigmatic categories over a broad range of orbital regions and object types.  It is additionally not clear whether 
such categories would transfer easily to a “synthetic” light-curve situation in which the response is an amalgamation 
of single-point measurements rather than one long, continuous track.  In the asteroid tracking community, Bowell 
and Lumme [2] have proposed a two-parameter brightness response model, in which one parameter is the zero-phase 
brightness and the other scales a fixed, phase-based disillumination function; such an approach is not conceptually 
dissimilar to the common method of considering each satellite to have the properties of a diffuse sphere and to adjust 
the albedo and sphere diameter in order to create a best-fit to the observed data.  Work by Lambert [3,4], Hejduk [5], 
and Lambour [6,7], among others, has shown the diffuse sphere assumption to be a poor model for spacecraft 
brightness response, certainly to anything other than the first order.  Many databases simply opt for descriptive 
statistics of the entire photometric dataset for each satellite, prescinding from any direct attempt to model the 
brightness response as a function of illumination geometry.  These present practices do not provide a particularly 
encouraging foundation for the development of brightness response paradigms for collections of single-point 
photometry data on individual objects. 
 The largest dataset of single-point photometry data is currently maintained by the Joint Space Operations Center 
(JSpOC) at Vandenberg AFB, CA.  Consisting of all of the photometric measurements made with each metric 
observation, the database contains approximately 3.5 million track-averaged measurements on objects in the general 
satellite catalogue.  These measurements feed a model to predict satellite brightness as a function of illumination 
geometry.  This model, called KOI (Kriging Optimized Interpolation), comprises a deterministic and stochastic 
portion in the hopes of taking advantage of the portion of the response that can be reasonably modeled 
deterministically while recognizing that this portion of the model will often fall short of a satisfactory fit, thus 
requiring a stochastic portion, as a function of solar phase angle and solar declination angle, to try to characterize 
and model the residual [8].  This allows both the calculation of minimum-variance estimates of the residual at each 
illumination geometry point and the predictive force of the deterministic model both to be in play for a single 
satellite.  For some satellites, the deterministic model is quite representative, and the stochastic model assumes a 
very small role; for others, the deterministic model is poorly representative, and the stochastic model thus has the 
more important job of trying to characterize and form predictions based on the residuals.  When photometric data on 
a satellite are sparse or heavily regionalized, the deterministic model becomes important as a predictive faculty, 
although the Kriging stochastic model is designed to resist the usual problems with stochastic representations of 
sparse or regionalized data.  When photometric data are dense and broadly represent the range of illumination 
geometries, then most interpolation schemes will perform adequately, so the precise form of the stochastic model is 
no longer so important. 



 
 

Fig. 1:  Brightness measurement data densities by orbital regime 
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 The specifics of the KOI model and its performance have been reported and documented in other venues [8,9] 
and need not be given expansive presentation here; the present interest is to determine whether some of the 
parameters and calculations performed by this modeling effort may be useful in establishing categories of different 
satellite photometric response.  While the KOI model is inherently flexible enough to allow deterministic models to 
be swapped out at an analyst’s will, the present form of the model that is used is a function merely of solar phase 
angle; so fit results from the application of the deterministic model may outline how well parameters of a phase-
angle-based function may serve as categorization criteria.  The stochastic portion attempts to establish, once the 
deterministic portion has been removed, the remaining degree of brightness correlation with small changes in phase 
and declination; parameters derived from this investigation also suggest themselves as mechanisms for establishing 
categories of different response types.  The treatment here will thus step through each proposed parameter type, 
examining it as a potential category boundary and, if it appears promising, suggesting actual values to use for such a 
boundary definition. 
 

2.  DATASET 
 
 The datasest used by the JSpOC for satellite photometric modeling is collected by the GEODSS system, a 
network of meter-class telescopes located at Socorro, NM; Maui, HI; and Diego Garcia, British Indian Ocean 
Territory.  Open-aperture brightness estimates, calibrated against a sub-catalogue of main-sequence registration 
stars, are made as part of the frame processing for each streak.  This has permitted a database of some 3.5 million 

photometric measurements, against a wide 
variety of satellite classes and orbit types, 
to be collected over the last several years.   
 It was seen as expedient to conduct the 
analysis separately by both orbit class and 
object type.  Only deep-space satellites 
(period greater than 225 minutes) were 
examined, and among these three different 
orbit classes were considered:  HEO, with 
an eccentricity greater than 0.25; MEO, 
with a period between 600 and 800 
minutes and an eccentricity less than 0.25; 
and GEO, with a period between 1300 and 
1800 minutes, an inclination less than 35 
degrees, and an eccentricity less than 0.25.  
The data on satellites in these orbital 
regimes were further separated by object 
type, using the categories of payload, 
rocket body, and debris.  For the GEO 
orbital regime, the payload object type was 
further separated into station-kept 
(geosynchronous drift rate less than 0.03 

degrees/day, called “SGEO”) and “un-station-kept” (larger drift rate, called “UGEO”).  Fig. 1 gives a CDF plot of 
the number of photometric measurements for the objects in each of these orbit regimes.  In order to ensure that 
category conclusions be derived from adequately-sampled cases, only those satellites with measurement histories 
exceeding 500 measurements were used in the subsequent analysis.  
 

3.  HALF-PLANE SLOPE ANOMALOUS BEHAVIOR 
 

 The deterministic model applied as the first part of the KOI process is a linear fit to the brightness data as a 
function of solar phase angle.  A notable body of work has concluded that the linear fit is the best simple functional 
representation of spacecraft brightness variation with phase angle [6, 7, 10].  While the particular phase-based 
approach used here is not new, there are some subtleties that set it apart from other implementations.  First, a signed 
phase angle rather than simply an absolute value is used; negative phase is the phase angle before the minimum 
phase is reached, and positive phase is the angle after minimum phase.  This distinction is important for stabilized 
GEO payloads; for in such cases the phase angle not only describes the amount of illumination but the east-west 
positioning of the illumination on the satellite, so in general a different response is expected at, say, a measurement 



 
 

Fig. 2:  Example of brightness fit versus solar phase 
angle.  The y-axis is Mv; the x-axis is signed solar 

phase angle. 

 

at -30 degrees in phase than a +30 degree measurement.  The use of a signed phase angle necessitates two curve fits:  
one for the negative half-plane and one for the positive half-plane.  This distinction introduces many possible 
categorization options, as the behavior in one half-plane can be compared to that of the other and potential useful 
categories articulated.  Second, a binned approach to brightness representation is used; the brightness data are placed 
into three-degree phase bins (e.g., -150 to -147 degrees, -147 to -144 degrees, &c.), with the median brightness value 

of the data in each giving the representative brightness 
value for that bin; only bins whose population exceeds 
a minimum value are used in the linear fit.  This keeps 
the highly-sampled phase regions from dominating the 
fit and allows the overall fit to be more properly 
predictive of unsampled regions.  Third, rather than 
least-squares fitting, a robust regression (iteratively-
reweighted bisquare) approach is used.  This method is 
more resistant to outlier corruption and therefore should 
serve as a better representation of behavior across the 
entire phase angle region.  Fourth, a Student’s t-test is 
performed against the derived slope from the linear fit 
to ensure that it differ significantly from zero, and only 
those cases in which the t-test is passed (at the 5% 
significance level) is the linear fit registered. 
 Fig. 2 gives an example of this fitting approach and 

displays a well-behaved case.  Each symbol represents one brightness bin, blue for negative phase angles and red for 
positive phase angles.  Both datasets are quite reasonably represented by a linear fit.  The two fits both show a 
decrease in brightness with increasing (absolute value of) phase angle, and in addition are of approximately the same 
slope and share a near-common point of intersection with the 0-phase vertical line.  This would represent the 
expected behavior for the typical space object, so perhaps a first test of atypicality might be a failure to conform to 
the broader parts of this paradigmatic behavior.  Possible deviations would be the “wrong” slope, in which 
brightness would increase with decreasing phase angle, in one or both half-planes, or simply the failure to establish a 
linear fit in either or both half-planes due to the failure of the t-test.   
 Table 1 below gives a summary of such cases, broken out by orbital regime and additionally by object type.  
One is struck by the degree to which the paradigmatic case of a properly-sloped fit in each half-plane is observed:  at 
least 95% of the time for each of the orbital regimes.  The only instance in which a significant departure appears is 
that of HEO debris, in which 20% of the cases display fits with non-canonical slope.  So a first grouping might be 
those cases that exhibit the expected behavior with phase in both half-planes.  While this separates only 5% of the 
cases from the main group, it is clear that such situations are of a different kind and especially puzzling when well 
sampled. 
 

Table 1:  Linear fit anomalous conditions by orbital regime and object type.  The values are percentage of each 
object type (each column adds to 100) 

 
 
 

4.  MAGNITUDE AND CONSISTENCY OF HALF-PLANE SLOPES 
 
 For those cases that conform to the paradigmatic behavior, described previously, the next area of inquiry is the 
magnitude of the fitted slopes themselves.  The plots in Fig. 3 show these values by orbital regime and secondarily 

Pay R/B Deb Tot Pay R/B Deb Tot Spay Upay R/B Deb Tot
Both slopes wrong 6.7 1.5 0.5 11.1 0.4
One right, one wrong 1.4 14.0 3.9 1.9 2.7 2.1 2.9 6.2 1.2 11.1 4.3
One 0, other right
One 0, other wrong
Both slopes zero
Both slopes right 100.0 98.6 79.3 94.6 98.1 97.3 100.0 97.9 97.1 93.3 98.8 77.8 95.3

HEO MEO GEO



by object type.  While the graphs’ x-axes are numerically delimited by slope itself (Mv / phase degree), the vertical 
lines are placed such that each line represents a brightness decrease of one visual magnitude over the brightness 
space of -105 degrees to 0 degrees (or vice versa in the positive half-plane).  In examining the Fig. 3 plots, when 
there is a “knee” in the CDF curve it tends to occur at the second vertical line, which represents an overall difference 
of two visual magnitudes over the typical phase angle observing range; this is true for all of the object types in GEO, 
for debris in HEO, and for rocket bodies in HEO and MEO.  Across all three orbital regimes, response for rocket 
bodies and debris is almost entirely confined to this 2 Mv region; it is payloads, both stabilized and unstabilized, that 
frequently stray beyond this.  So if one wishes to articulate some catetorial criteria based on linear fit slope, he can 
begin perhaps with a slope threshold of 0.022 Mv / phase degree.  This slope threshold would flag unusual debris 
and rocket body response across all orbital regimes, separate out about half of the payloads in HEO and GEO, and 
flag unusual payload response in GEO.  Such a criterion never separates more than 30% of any given object type 
group, but it is a beginning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.  HALF-PLANE SLOPE SYMMETRY 
 
 An additional area of enquiry is an examination of the degree of symmetry between the slopes in the negative 
and positive half-planes.  The expectation is that for non-stabilized objects, especially in the highly-sampled case, 
the random aspect function should produce nearly identical Mv-vs-slope functions for both positive and negative 
phase angles; stabilized payloads could well show significant differences.  Fig. 4 below shows the half-plane slope 
differences by orbital regime and secondarily by object type.  The difference value reflected in the CDF plots is 

 
 

 
 

Fig. 3:  CDF plots of absolute value of linear slope.  Clockwise from top left:  HEO, MEO, GEO 
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simply the sum of the negative half-plane slope and the positive half-plane slope; if the negative half-plane slope is 
larger, then a negative value will be produced &c.  Obviously, a value near zero indicates symmetry. 
 For HEO and MEO, 80% of all three object types manifest absolute slope differences less than 0.005 Mv/deg; 
and for rocket bodies it is nearly 100%.  For GEO objects, the 0.005 separator is more useful in that it contains 80% 
or better of rocket bodies, debris, and unstabilized payloads but only 40% of the stabilized payloads.  While perhaps 
somewhat less cut-and-dried than the absolute slope measurement, this value still provides a reasonable categorial 
boundary. 
 In examining the graphs, a slight negative bias is observed for all three orbital regimes; it is most pronounced in 
GEO.  This is believed to be an artifact of the manner in which GEODSS sensors respond to sensor tasking:  
because they wish to give themselves multiple opportunities to track an assigned satellite should acquisition fail on 
the initial attempt(s), they schedule each object shortly after it enters the sensor’s FOV, which for most objects 
(especially in GEO) corresponds to a negative phase angle.  Because of this scheduling favoritism, the negative half-
plane tends to get denser and broader sampling than the positive half-plane, which can give rise to the kind of bias 
observed here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

 
 

Fig. 4:  Differences in slopes of linear fit in each half-plane.  Clockwise from top left:  HEO, MEO, GEO 
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6.  STANDARD ERROR OF LINEAR FIT 

 
 A final potential discriminator among response types is the standard error of the linear fit.  Since robust 
regression is used, the standard error is changed from the usual calculation (appropriate when the sum-of-squares 
residual is being minimized) to the mean absolute deviation, here divided by a constant to render it an unbiased 
quantity for the normal distribution.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5 shows the results, in CDF form, for this particular quantity.  In the MEO and GEO orbital regimes, rocket 
bodies are the best behaved (the debris sample size is small and not particularly conclusive), with at least 90% of the 
cases achieving a standard error value of 0.2 or smaller; payloads (of both types) exhibit much larger values:  60% 
of the MEO/GEO payloads have standard error values larger than 0.2.  In HEO a different behavior is observed.  
While still the best behaved of the object types, rocket bodies now require a threshold of 0.3 in order to meet the 
95% level, and debris is by far the worst performing of the object types.  Because the CDF plots here are mostly 
continuous rather than displaying knee-type behavior, and because any choice of an arbitrary cumulative percentile 
threshold (e.g., 95%) would produce notably different standard error thresholds by orbit regime, it does not appear 
that the standard error attribute will serve well to define a response category. 
 As an aside, the shift in object type performance prompts an investigation of the manner in which satellites can 
manifest a poor standard error value; and upon visual examination of a large number of cases, it becomes clear that 
there are two principal strains of this behavior:  large random errors and clearly systematic errors.  Fig. 6 gives an 
example of both.  Most stabilized payloads with large errors manifest them as systematic errors, varying from the 

 
 

 
 

Fig. 5:  Robust estimate of fit standard error.  Clockwise from top left:  HEO, MEO, GEO 
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linear fit in a continuous and predictable way; most non-stabilized objects show random variation, in which there is 
little discernable pattern about the fit line.  Such cases are easy to distinguish visually.  For automatic recognition, 
one approach could be attempting a polynomial fit and determining whether the standard error of that fit is 
significantly better than that of the linear case.  When this is true, a systematic deviation situation is present; when it 
is not, a random error situation can be presumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. VARIOGRAM-RELATED PARAMETERS 
 
 It was discussed previously that the KOI brightness modeling approach employed both a deterministic and a 
stochastic model.  The robust linear fit in phase, examined in the previous sections, constitutes the deterministic 
model; and if fully adequate to the task, its application should “detrend” the residual data so that there are no 
systematic effects in solar phase angle.  This leaves a group of residuals that should manifest only stochastic 
dependencies in solar phase and solar declination.   
 A common way to evaluate such dependencies is to construct a variogram, which will characterize the change 
in object brightness as a function of small changes in phase and declination angle.  Imagine each brightness residual 
plotted on a three-dimensional graph, with the brightness residual as the dependent variable (z) and the solar phase 
angle and solar declination angle of each residual as the independent variables (x and y).  For every pair of residuals, 

the square of the brightness difference (γ) and the Euclidian 
difference between the points x-y plane coordinates (h) are 
calculated, these results are binned, and the binned results 
plotted in a manner that shows the brightness dependence 
as a function of phase-declination Euclidian distance.   
Fig. 7 gives an example of a canonical variogram, which 
contains several features of interest.  First, this particular 
variogram intersects the origin, which means that 
brightness difference correlates with small changes in 
phase/declination angle all the way to the smallest 
variation.  Had it manifested a positive y-intercept (called a 
“nugget” from the technique’s origin in the mining 
industry), this would indicate a component of random error:  
for phase/declination changes smaller than a certain 
amount, the effect on brightness is essentially random; this 
establishes a limit on the fidelity of any predictions the 

model may make.  Second, this variogram reaches a horizontal asymptote (called a “sill”); this outcome means that 
beyond a certain degree of Euclidian separation in the phase/brightness plane, there is no longer any correlation 
between brightness values; the separation distance for which this happens is called the correlation length and defines 

 

  
 

Fig. 6:  Two different strains of large standard error of fit.  The graph at left, showing systematic variation, is 
from a stabilized payload; the one at right, showing random error, is from a rocket body. 

 

 
 

Fig. 7:  Canonical stationary variogram 



the region of the regionalized variable.  To complete the picture, the variogram will be used as a weighting function 
to compute any desired predicted brightness value (as a function of solar phase and declination angles) as a linear 
combination of the surrounding data. 
 This stochastic modeling approach suggests two possible categorization parameters, and the first is whether the 
variogram reaches a horizontal asymptote.  The presence of such an asymptote, called a “stationary” situation and of 
interest because it gives the stochastic solution additional desirable properties, also speaks to the deterministic 
model’s having accounted for most of the systematic brightness.  Table 2 gives the percentage results for this feature 
by orbital regime and object type.  An “indeterminate” situation is one in which no suitable variogram model, 
stationary or otherwise, could be applied. 
 

Table 2:  Variogram types.  The values are percentage of each object type (each column adds to 100) 

 
 
 It is heartening to see that the stationary forms of the variogram predominate, in anywhere from two-thirds to 
four-fifths of the cases (debris in MEO and GEO is undersampled and therefore not definitive).  In these stationary 
cases, the conclusion is that the deterministic model chosen (here the robust regression fit as a function of phase 
angle), once applied, successfully keeps the mean brightness the same throughout all of phase-declination space.  
The longer the variogram takes to reach the asymptote, the larger each “region” of phase-declination space needs to 
be in order to realize this constant mean; but there is no overall drift of the mean brightness in phase or declination.  
This does not mean, of course, that the linear fit model is the best model; a better model would reduce the post-
deterministic brightness residuals and thus leave less of the overall prediction to the whims of the stochastic model, 
improving the brightness prediction reliability for any given phase-declination independent-variable pair.  However, 
it does show that the linear fit model is frequently capable of reducing the situation to one that is truly stochastic. 
 Rocket bodies lodged some of the best performance with regard to the linear fitting, so it is somewhat surprising 
to see them fare relatively poorly in terms of producing stationary variograms.  However, this poor performance 
does appear ironically to be brought about by the success of the fit.  The post-deterministic-model residuals in such 
cases have been reduced to levels commensurate with the inherent errors of the observations; and in such cases, the 
variogram itself becomes unreliable.  One thus observes the indeterminacy numbers to be higher for rocket bodies 
than for the other object types.  Cases of non-stationarity also may be elevated, but these elevations are slight and do 
not in every case predominate (e.g., HEO rocket bodies versus debris).   
 For those cases that do embrace a stationary model, one is next interested in the ratio of the y-intercept value to 
the asymptote value.  If this value is large, then there are large changes in brightness correlation with Euclidean 
separation distance; if it small, then there actually is not much correlation at all with Euclidean distance, meaning 
that the brightness residuals essentially vary randomly (as opposed to a correlated manner with phase and 
declination angles). 
 The results are shown in Fig. 8.  Perhaps as expected (given the stationary / non-stationary performance 
observed previously), rocket bodies in all three orbit regimes yield the least correlation with phase and declination 
angles, as shown by the high percentage of y-intercept-to-asymptote values—nearly all greater than 80%.  As was 
explained previously, this appears to be due to the linear fit’s consistently good performance against this object type:  
the residuals are essentially random and show no further correlation with the independent variables used.  The other 
object types show a wider range of this percentage, although there is no obvious “knee in curve” that would separate 
one type of response from another.  The curves do produce a left-skewed tail, but even this is approached more or 
less continuously.  One could say, for example, that the MEO payload line changes character at about the 70% point, 
but this would be a distinction more arbitrary than definitive; and such thresholds would have to be set separately for 
each object type within each orbital regime; it is not easy to articulate a single standard that would suffice for 
multiple regimes and types.  
  

Pay R/B Deb Tot Pay R/B Deb Tot Spay Upay R/B Deb Tot
Stationary 77.0 69.3 74.4 72.1 68.4 56.8 50.0 66.0 82.4 75.2 66.3 44.4 74.8
Non-Stationary 10.9 14.7 19.5 14.9 14.8 10.8 13.9 8.8 13.2 7.6 44.4 11.2
Indeterminate 12.1 15.9 6.1 12.9 16.8 32.4 50.0 20.1 8.8 11.7 26.2 11.1 14.1

HEO MEO GEO



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.  CATEGORIZATION SUMMARY 
 

 The preceding sections have outlined 
and evaluated possible categorization 
parameters and, in those cases in which 
the parameters seem promising, have 
recommended actual threshold values that 
will act to separate out different kinds of 
response.  In trying to present the result of 
a contemporaneous application of the 
promising parameters, one is faced with a 
large number of possible combinations.  
Fortunately, a simplification is at hand in 
that the parameters themselves suggest a 
nested application:  one would first want 
to screen for “abnormal” slopes as the 
most basic of normality investigations, 
then apply the slope symmetry test to the 
cases that survive the abnormal slope test 
as an indicator of an abiding satellite 

 
 

Figure 8:  Ratio of variogram y-intercept (nugget) to asymptote (sill) 
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Figure 9:  Results of successive application of categorization criteria 
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asymmetry, then apply the stationarity test to the cases that survive the slope symmetry test as an indicator of the 
adequacy of the overall linear model, then separate this last set into small and large absolute slopes as a simple 
division of this remaining sample space.  Fig. 9 shows the results of this successive application of tests.  The first 
three categorizations successively identify and eliminate minority and pathological cases:  the correct slopes test 
eliminates about 5% of the cases, the slope difference test eliminates about 8%, and the stationary model test 
eliminates about 24%.  The absolute slope test separates the remainder into a 12% and a 51% set.  So the successive 
application of these criteria creates five different categories, with the four small categories ranging from 5% to 24% 
and the remaining “mainline” category with about half of the overall cases.  While one might wish for a broader 
categorization of the full response set, rather than leaving half of the cases as a main-sequence group, on the whole 
this categorization approach is not unattractive.  Each of the divisions maps to an attribute useful for brightness 
modeling, and the thresholds used respond to the “knees-in-the-curve” for each such attribute.  More study would be 
necessary to determine how best to divide up the main-sequence set, but it is expected that binning of a more or less 
arbitrary kind might be required.  Furthermore, at some point it should be investigated how well these categories can 
be brought to bear on the more lightly-sampled cases (i.e., those with fewer than the 500 measurements required for 
this study) and whether they break down at a certain sample size. 
 It is interesting that three of the four categorization criteria make use of a functional dependence on solar phase 
angle only, and the one exception (stationarity) can revert to this if the dependence on solar declination angle is 
weak.  This analysis thus testifies to the enduring utility of phase angle as a broad-spectrum brightness classifier, 
despite its known limitations. 
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