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ABSTRACT

In the space surveillance tracking domain, it is often necessary to assess not only the covariance consistency or
covariance realism of an object’s state estimate, but also the realism (proper characterization) of its full estimated
probability density function. In other words, there is a need for “uncertainty realism.” We propose a new metric
(applicable to any tracking domain) that generalizes the covariance realism metric based on the Mahalanobis
distance to one that tests uncertainty realism. We then review various goodness-of-fit and distribution matching
tests that exploit the uncertainty realism metric and describe how these tests can be applied to assess uncertainty
realism in off-line simulations with multiple Monte-Carlo trials or on-line with real data when truth is available.

Keywords: metrics, covariance consistency, covariance realism, uncertainty realism, Mahalanobis distance,
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1. INTRODUCTION

A point estimator is one that uses sample data to calculate a single value or statistic. Two desirable properties
of a point estimator are that it be unbiased and consistent. The estimator is unbiased if the difference between
the expected value and the true value of the parameter being estimated is zero. It is consistent if the expected
value of the estimator converges in probability to the true value of the parameter being estimated as the sample
size increases. Under Gaussian assumptions, covariance realism∗ is the proper characterization of the covariance
(statistical uncertainty) in the state of a system. Covariance realism requires that the estimate of the mean be
the true mean (i.e., the estimate is unbiased) and the covariance possesses the right size, shape, and orientation
(i.e., consistency). Relaxing any Gaussian assumptions, uncertainty realism is the proper characterization of
the probability density function (statistical uncertainty) of the state of a system. For non-Gaussian probabil-
ity density functions (PDFs), higher-order cumulants (beyond a state and covariance) are needed to properly
characterize the errors. Covariance realism is a necessary but not sufficient condition for achieving uncertainty
realism. In the space surveillance tracking domain, the PDF of a space object’s orbital state sometimes can be-
come non-Gaussian, especially in applications requiring non-linear uncertainty propagation such as uncorrelated
track (UCT) resolution from sparse data with long time gaps. Thus, in such applications, there is a need to
represent the uncertainty using a general (non-Gaussian) PDF and to assess more general uncertainty realism.

Metrics for evaluating covariance realism are defined and evaluated by Drummond, Ogle, and Waugh1 and the
references contained therein. Of particular interest is what Drummond et al. call the track covariance consistency
metric (which is called the covariance realism metric throughout this article). Specifically, the metric assesses,
for a particular object, the mean normalized chi-squared statistic of the track (orbit) assigned to that object.
This covariance realism metric is defined using the Mahalanobis distance2 and has several properties that make
it well-suited for assessing covariance realism:
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1. It is compatible with any choice of coordinate system used to represent uncertainty. Hence, the metric
need not be restricted to Cartesian representations of uncertainty.†

2. It takes into account each component of the orbital state and each component of the covariance matrix
used to represent the (Gaussian) uncertainty.

3. It is dimensionless and non-intrusive (i.e., it does not require any additional knowledge about how the state
and covariance are generated).

4. It is computationally tractable and statistically rigorous.

5. It can be used both in off-line simulations with multiple Monte-Carlo trials (including a single run of a
simulation) and also on-line with real data assuming a reference or truth trajectory is available.

In the context of space surveillance tracking, the covariance realism (or Mahalanobis distance) metric has been
used by several groups.5–8 A main contribution of this paper is a proposed definition of a new tracking metric
(applicable to any tracking domain) that generalizes the covariance realism metric based on the Mahalanobis
distance to one that tests the proper characterization of the state PDF (i.e., uncertainty realism). Under weak
assumptions, this new uncertainty realism metric is also a chi-squared random variable. As such, analogous tests
for covariance realism (both in off-line simulations with multiple Monte-Carlo trials and online with real data)
can be extended to use the uncertainty realism metric, some of which are reviewed in this paper, such as Pearson’s
chi-squared goodness-of-fit test9 and the Cramér-von Mises goodness-of-fit test.10–12 We acknowledge that the
uncertainty realism metric and the corresponding tests for uncertainty realism proposed in this paper only address
aleatoric uncertainties (which fit naturally in a probabilistic framework) and not epistemic uncertainties (which
are generally treated by non-probabilistic methods).

The plan of this paper is as follows. In Section 2, we provide the background on the proposed metrics
for covariance and uncertainty realism and their use in Monte-Carlo simulations. In particular, we review the
classical Mahalanobis distance and its use for testing covariance realism. We then discuss how the Mahalanobis
distance can be generalized to non-Gaussian PDFs, thereby defining a metric for uncertainty realism. Tests that
use the uncertainty realism metrics in off-line simulations are subsequently proposed, including an “averaged
version” of these metrics followed by our recommended (and more powerful) tests that use distribution matching
techniques based on Pearson’s chi-squared goodness-of-fit test and the Cramér-von Mises criterion. Section 2 also
reviews some of the other distribution matching tests as well as tests for normality and why we have chosen not
to pursue them. In Section 3, we illustrate an example application of the recommended metrics and statistical
tests described in the previous section to assess uncertainty realism in the problem of uncertainty propagation
in space surveillance. A more detailed study is carried out in the companion paper.3 Based on this example and
the results in the companion paper, we provide recommendations and make conclusions in Section 4.

2. BACKGROUND

2.1 Mahalanobis Distance

The track (orbit) covariance realism metric evaluates the consistency of the uncertainty corresponding to the
orbit state estimate against some known truth state. It is assumed that the orbital state uncertainty is Gaussian
so that it can be represented by a single state and covariance matrix. Recall that the random vector x ∈ Rn is
jointly distributed as a Gaussian distribution if and only if its joint PDF has the form

px(x;µ,P) = N (x;µ,P) ≡ 1√
det(2πP)

exp

[
−1

2
(x− µ)TP−1(x− µ)

]
. (1)

†Even though the companion paper3 recommends the use of orbital element coordinates for representing and propa-
gating orbital state uncertainty in space surveillance, in some applications, a Cartesian representation of the uncertainty
is required. In such instances, Aristoff et al.4 demonstrate how uncertainty in orbital elements can be faithfully (and
efficiently) transformed to Cartesian space using Gaussian mixtures.



In this definition, µ ∈ Rn denotes the mean (which also coincides with the mode) and P is an n× n symmetric
positive-definite matrix called the covariance.

Under these Gaussian assumptions, the covariance realism metric is defined using the Mahalanobis distance.
Let x be a given (Gaussian) orbital state estimate at a certain time t and let P be its corresponding estimated
covariance. Further denote xtruth as the truth state of the target at time t. The Mahalanobis distance between
the estimated orbit state and truth target state is defined as

M(x;xtruth,P) = (x− xtruth)TP−1(x− xtruth). (2)

The expected value of M is n, where n is the dimension of the state vector x. Moreover, it follows that
M∼ χ2(n); i.e., M is chi-squared distributed with n degrees of freedom.

Given a significance level α (typically 0.01 or 0.001), one can derive a two-sided 100(1 − α)% confidence
interval for the distribution χ2(n)/n given by [χ2(n;α/2)/n, χ2(n; 1 − α/2)/n], where χ2(n;β) is the 100β%
quantile of the distribution χ2(n). One rejects the null hypothesis that the covariance P centered at the estimate
x is realistic given the truth xtruth if M(x;xtruth,P)/n falls outside this two-sided confidence interval. For
example, if α = 0.001 and n = 6, the two-sided 99.9% confidence interval for this test is [0.0499, 4.017].

We remark that (2) can be modified to accommodate the case in which the truth state xtruth is imprecise or
“fuzzy.” If the uncertainty in xtruth is provided as a covariance matrix Ptruth then, in place of (2), one can use

M(x;xtruth,Ptruth,P) = (x− xtruth)T (P + Ptruth)−1(x− xtruth). (3)

2.1.1 Example

The covariance realism metric based on the Mahalanobis distance (2) or (3) has many applications both at the
sensor- and system-level. One example of its use for validating covariance realism during uncertainty propagation
is the following. First, we make the following basic assumptions: (i) the orbital state uncertainty is identically
Gaussian and is realistic‡ at some initial epoch t0, and (ii) the truth state xtruth is available at some future time
t > t0. With these assumptions, we propagate the Gaussian at epoch t0 to time t, approximate the propagated
uncertainty by a Gaussian with state (mean) x and covariance P, and evaluate the metric (2). The application of
this metric is only valid if the propagated uncertainty is represented by a Gaussian distribution. A generalization
of the covariance realism metric to an uncertainty realism metric that relaxes the assumptions that the initial or
propagated uncertainty be Gaussian is described in the Subsection 2.2.

2.2 Generalization of the Mahalanobis Distance

Let px(x; Θ) denote a general PDF in the n-dimensional orbit state x with some parameter set Θ. The proposed
generalization of the Mahalanobis distance which serves as a metric for uncertainty realism is defined by

U(x; Θ) = −2 ln

[
px(x; Θ)

px(x̂; Θ)

]
, (4)

where x̂ is the mode of x:
x̂ = arg max

x
px(x; Θ).

We remark that for a Gaussian PDF, as defined in (1), the parameter set Θ encapsulates the mean µ and
covariance P. Further, in such a case, the uncertainty realism metric (4) reduces to

U(x; Θ) = U(x;µ,P) = (x− µ)TP−1(x− µ),

which is precisely the Mahalanobis distance (2) defined earlier. For a Gauss von Mises distribution,3,13,14 it can be
shown that U(x; Θ) is also chi-squared distributed with n degrees of freedom (under certain weak assumptions).

‡In this example, we will not be concerned about how this initial Gaussian covariance is generated and if it is indeed
realistic. If such a covariance is generated from a batch process (e.g., non-linear least squares, differential correction) using
multiple sensor observations, the covariance realism would be highly dependent on the realism of the sensor measurement
errors.



Thus, in analogy to the statistical test for covariance realism described at the end of Subsection 2.1, the metric
(4) provides a test for uncertainty realism.

The uncertainty realism metric (4) is also chi-squared distributed under the following scenario. Suppose
again that px(x; Θ) = N (x;µ,P), and let x = Φ(y) where Φ is a volume-preserving transformation§ (i.e.,
the determinant of its Jacobian is unity). By the change of variables theorem, it follows that py(y; Θ) =
N (Φ(y);µ,P) and, from the definition of the uncertainty realism metric (4), U(y; Θ) =M(Φ(y);µ,P). Thus,
quite remarkably, the uncertainty realism metric for any (possibly non-linear) volume-preserving transformation
of a Gaussian random vector also possesses the chi-squared property.

The property presented above is significant with regards to uncertainty propagation of a space object’s orbital
state under two-body dynamics. Since the dynamics are dominated by conservative forces (i.e., gravity), any ini-
tial Gaussian distribution that is propagated under said dynamics will have the form det(∂Φ/∂y)N (Φ(y);µ,P),
where det(∂Φ/∂y) ≈ 1. This is a consequence of Liouville’s theorem15 in Hamiltonian mechanics. Thus, the
uncertainty realism metric (4) applied to this distribution will be (approximately) chi-squared distributed. In
practice, we approximate this propagated distribution by some parametric family of distributions such as a mul-
tivariate Gaussian. If the propagated distribution cannot be properly characterized by a single Gaussian, we
can approximate it using, for example, a Gauss von Mises distribution3,13,14 or a Gaussian mixture.16–20 For
the latter, if the Gaussian mixture well approximates¶ the actual distribution det(∂Φ/∂y)N (Φ(y);µ,P), then
one can apply the definition (4) directly to the Gaussian mixture knowing that the resulting test statistic is
(approximately) chi-squared distributed.

2.2.1 Statistical Interpretation

The statistical interpretation of the Mahalanobis distance metric (2) and its generalization, given by (4), can be
understood by considering the general setting of a multivariate random vector x with support on a differentiable
manifold M. We express its PDF in the form px(x; Θ) = e−f(x;Θ)/2 ⇔ f(x; Θ) = −2 ln px(x; Θ). Suppose now
that a point x∗ ∈M is given and one wishes to test the null hypothesis H0 that x∗ is not a statistically significant
realization of the random vector x (i.e., x∗ is a representative draw from x). The p-value for a one-sided test is

p = Pr[x ∈ Ω∗] =

∫
Ω∗

e−f(x;Θ)/2 dx, (5)

where Ω∗ = {x | f(x; Θ) > f(x∗; Θ) ≡ C}. Smaller p-values imply that the realization x∗ lies farther out on
the tails of the PDF (see Figure 1(a)). The null hypothesis H0 is rejected at the significance level α (typically
0.01 or 0.001) if p < α. Figure 1(b) shows the setup for the analogous two-sided hypothesis test. For a given
significance level α, one determines the contours CL and CU such that∫

ΩL

e−f(x;Θ)/2 dx =

∫
ΩU

e−f(x;Θ)/2 dx =
1

2
α,

where ΩL = {x|f(x; Θ) < CL} and ΩU = {x|f(x; Θ) > CU}. (Note that the yellow shaded region in Figure 1(b)
has probability α.) A two-sided test with significance level α rejects the null hypothesis H0 if f(x∗; Θ) < CL or
f(x∗; Θ) > CU .

2.2.2 Examples

Suppose px(x; Θ) = N (x;µ,P) (i.e., x is Gaussian) and a realization x∗ ∈ Rn is given, then

f(x; Θ) = −2 lnN (x;µ,P) =M(x;µ,P) + ln det(2πP),

where M is the Mahalanobis distance (2). The integration region Ω∗ in (5) is

Ω∗ = {x ∈ Rn | f(x; Θ) > f(x∗; Θ)} = {x ∈ Rn | M(x;µ,P) >M(x∗;µ,P)}.
§One example of a volume-preserving transformation is the solution flow of a conservative dynamical system that

propagates some initial state x0 at time t0 to a state x at time t.
¶In principle, any PDF can be approximated by a Gaussian mixture to within any desired accuracy (in the L1 sense)

due to a result of Alspach and Sorenson.21
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Figure 1. Setup for the statistical significance tests. The yellow shaded regions are those regions in which the null
hypothesis is rejected. Dependence on the parameter set Θ in f(x; Θ) is omitted in the figure.

Substituting this information into (5) yields

p = Pr[x ∈ Ω∗] = Pr[M(x;µ,P) >M(x∗;µ,P)] = Pr[χ2(n) >M(x∗;µ,P)].

Thus, the resulting p-value can be computed by evaluating the complementary cumulative distribution function
(i.e., tail distribution) of χ2(n) at the Mahalanobis distance (2) evaluated at the realization x∗.

The uncertainty realism metric (4) can also be applied in analogy to the example discussed in Subsection 2.1
on uncertainty propagation. We make the analogous basic assumptions that (i) the orbital state uncertainty is
represented by some general PDF (that need not be Gaussian) and is realistic at some initial epoch t0, and (ii)
the truth state xtruth is available at some future time t > t0. With these assumptions, we propagate the initial
PDF at epoch t0 to time t yielding the PDF px(x; Θ), and evaluate the uncertainty realism metric U(xtruth; Θ)
from the definition (4). Based on some confidence interval of the underlying chi-squared distribution, we might
reject the null hypothesis that the propagated PDF “captures the truth”; i.e., xtruth is a representative draw
from px(x; Θ).

2.2.3 Important Remarks

It is important to understand that covariance realism does not always imply uncertainty realism. Said in another
way, if one has properly characterized the first two cumulants (i.e., mean and covariance) of the state PDF,
then it does not necessarily imply that those two cumulants alone are sufficient for characterizing the full PDF.
Consequently, while our proposed tests for uncertainty realism can detect a breakdown in uncertainty realism,
such a breakdown does not say anything about the realism of the covariance‖. This is a moot point; one needs to
strive for uncertainty realism. Henceforth, we will use the terms “uncertainty realism metric” and “uncertainty
realism test” exclusively.

2.3 Averaged Uncertainty Realism Metric

As an uncertainty realism metric, one can consider the value of U (or M in the Gaussian case), averaged over
all orbits or at each time instance (averaged over one or many Monte-Carlo trials, or with real data), together
with upper and lower bounds for a particular confidence interval. Specifically, let U (i) be the uncertainty realism
metric (4) computed in the i-th Monte-Carlo trial. Let k be the total number of independent trials. Then,

Ū ≡ 1

nk

k∑
i=1

U (i) ∼ 1

nk
χ2(nk). (6)

One can test the null hypothesis that the (normalized) average of the samples U (i), given by Ū , is consistent
with the mean of the distribution χ2(nk)/(nk). For example, if n = 6 and k = 100, a two-sided 99.9% confidence

‖If one is only interested in testing covariance realism without regard to uncertainty realism, some options are provided
by Vallado and Seago.22
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Figure 2. Depiction of a distribution matching test. Shown is a histogram of Monte-Carlo trials with the expected χ2(n)
matching distribution. In this example, the sample mean (e.g., as would be computed from the uncertainty realism
test described in Subsection 2.3) is consistent with the expected value of the matching distribution; the sample variance
(and higher-order moments) would not be consistent. Thus, a distribution matching test would correctly reject the null
hypothesis that the samples come from a χ2(n) distribution; a first-order moment (mean) matching test would not.

interval for the distribution (6) is [0.8209, 1.2010]. Note that this is a necessary (but not sufficient) test of
uncertainty realism, and that E[Ū ] = 1. Moreover, Var[Ū ]→ 0, as k →∞ (i.e., the confidence interval becomes
infinitesimally small). Confidence intervals for other significance levels and other common values of n and k are
provided in Table 1 of the appendix.

As motivated in Section 2.4, a stronger test for uncertainty realism (in an off-line setting with multiple Monte-
Carlo trials) would be to consider the distribution of the Monte-Carlo samples U (i) and perform a distribution
matching or goodness-of-fit test.9 This test would indirectly consider the consistency of the sample with both the
mean and higher-order cumulants of the matching chi-squared distribution. The example below highlights some
of the differences between the averaged uncertainty realism metric and metrics based on distribution matching
and motivates the need for the latter more powerful tests.

2.3.1 Example

An off-line simulation with multiple Monte-Carlo trials that applies the metric (6) for assessing uncertainty
realism during uncertainty propagation is the following. First, we make the basic assumption that the orbital
state uncertainty is identically Gaussian and is realistic at some initial epoch t0. With this assumption, we
perform the following operations:

1. Propagate the Gaussian at epoch t0 to time t and approximate the propagated uncertainty by a Gaussian
with state (mean) µ and covariance P.

2. Sample random particle states∗∗ x(i)(t0), i = 1, . . . , k, from the initial Gaussian distribution at epoch t0.

3. Propagate each particle state x(i)(t0) from time t0 to time t yielding a propagated particle state x(i)(t).

4. For i = 1, . . . , k, compute U (i) =M
(
x(i)(t);µ,P

)
.

5. Compute the averaged uncertainty realism metric Ū from (6) in conjunction with the metrics U (i) computed
in the previous step††.

6. Perform the hypothesis test described in the text following Equation (6).

Figure 2 illustrates the differences between the conclusions one might make when applying the averaged
uncertainty realism metric described here and a distribution matching test. If one were to plot a histogram
of the Monte-Carlo samples U (i), it could look like the one shown in the figure. In this example, computing

∗∗A random draw x from a multivariate Gaussian with mean µ and covariance P can be obtained as follows. Let z
be a vector where each component is an independent random draw from the standardized Gaussian (i.e., the Gaussian
with mean 0 and variance 1); this functionality is provided in most programming languages and scientific and statistical
software. Then, the required x is the vector µ+ Az, where A is the lower-triangular Cholesky factor23 of the covariance
P such that P = AAT .
††Alternatively or in addition to Steps 5 and 6, one can compute the normalized Pearson test statistic or the Cramér-von

Mises test statistic from the U (i), and perform the corresponding hypothesis tests described in Subsection 2.4.



the average of the U (i) would yield a value of n, in agreement with the expectation of the χ2(n) distribution.
Consequently, one would be tempted to assert that one has uncertainty realism since the test statistic (i.e., Ū)
would lie in the center of any confidence interval. Indeed, consistency of the sample mean with the expected
value of the matching distribution is only a necessary condition for uncertainty realism. Clearly, as the figure
shows, the variance (as well as the higher-order moments) of the U (i) do not match those of the target chi-squared
distribution; the histogram is a poor fit. Therefore, a distribution matching test, such as one based on Pearson’s
test or the Cramér-von Mises test described in the next subsection, is a better test for uncertainty realism in
this case.

2.4 Distribution Matching Tests

It is helpful to keep in mind that the purpose of the multivariate PDF is to represent the statistical distribution
of the actual state errors. Durable testing of the adequacy of this PDF, therefore, must be an exercise in
distribution matching. Said another way, it must be a determination of whether the statistical distribution of a
set of state errors, usually calculated by the comparison of state estimates to an externally-determined precision
reference orbit, matches to a reasonable degree the distribution represented by the hypothesized multivariate
PDF. Testing approaches that do less than this, such as distribution-matching of only a single component of the
state error or the testing only for a matching of distribution mean values (as in the averaged uncertainty realism
metric described in Subsection 2.3), render results that can be of some use; but they will not allow a definitive
assessment of the realism of the uncertainty. It is thus important to discuss fully-formed methods of uncertainty
realism and the particular virtues that they possess so that the advantages and drawbacks of more abbreviated
methods can be thrown into relief.

Most multivariate distribution matching approaches proceed by calculating test statistics (e.g., a Mahalanobis
distance) that can then be evaluated for conformity to a canonical univariate distribution (e.g., a χ2 distribution)
and thus employ standard goodness-of-fit (GOF) techniques. GOF approaches comprise both specialty tests for
a specific distribution type (a number of these, for example, exist for the Gaussian distribution) and more general
tests that are capable of evaluating conformity to a number of different distributions. Because covariance realism
evaluation usually requires the evaluation of conformity to both the Gaussian and the chi-squared distribution,
and because uncertainty realism evaluation can involve testing for conformity to a variety of different distribu-
tions (including potentially distributions that have no analytic representation), one should focus on these more
fungible techniques, principal among them the traditional chi-squared distribution matching test and the family
of empirical distribution function (EDF) tests. An example of the former, Pearson’s chi-squared GOF test,
is discussed in Subsection 2.4.1, while examples of the latter, including the Kolmogorov-Smirnov, Cramér-von
Mises, and Anderson-Darling tests, are described in Subsection 2.4.2. Other possible GOF and EDF tests and
our reasons for not using them to assess covariance and uncertainty realism in space surveillance applications
are briefly discussed in Subsection 2.5.

2.4.1 Pearson’s Chi-Squared Goodness-of-Fit Test

Pearson’s chi-squared distribution matching test can be considered the most ecumenical in that it can be deployed
as a test of conformity to any distribution and can be used for discrete as well as continuous distributions. Further,
as a staple of most introductory statistics courses, it has the additional advantage of familiarity to most scientists
and engineers. When testing a random sample to see if it can be considered to belong to a hypothesized parent
distribution, the basic procedure is to (i) divide up the possible range of values of the random sample into a
set of m discrete cells; (ii) determine the number of values that actually fall into each cell and the number
that should have fallen into each under the assumed parent distribution; and (iii) compute the chi-squared test
statistic (defined below) and compare it to a critical value from the χ2 distribution. It what follows, we describe
these steps in more detail.

Specifically, let x(i), i = 1, . . . , k, denote the observed sample trials. We wish to test the null hypothesis that
these observations belong to a particular matching distribution. Suppose the observations x(i) are grouped into
m cells or bins where oj is the number of observations contained in the j-th bin. The normalized Pearson test
statistic is defined by

Pχ =
1

m− 1− p

m∑
j=1

(oj − ej)2

ej
, (7)



where ej is the expected number of observations contained in j-th bin as determined from the definition of
the j-th bin and the properties of the matching distribution. The normalized Pearson test statistic Pχ in (7)
asymptotically approaches the distribution χ2(m − 1 − p)/(m − 1 − p) where the integer p is the number of
co-variates used in fitting the matching distribution. For example, if the matching distribution is fixed (e.g., to
a χ2(6) distribution), then p = 0. The approximation of Pχ by a chi-squared distribution breaks down if the
expected frequencies ej are too low. One way to ensure that the ej are sufficiently large (so that the asymptotic
property of the Pearson statistic holds) is to choose m “equiprobable” bins so that ej = k/m for all j. In other
words, the bins are of variable width all having the same expected probabilities. One prescription for choosing
the number of bins is

m = max(5,min(100, 0.01k)).

We now specialize the framework of this goodness-of-fit test to the case when the observed samples x(i)

are U (i) corresponding to the uncertainty realism metric (4) of the i-th trial. (Recall that Subsection 2.3.1
provides an example of how the x(i) are generated in an uncertainty propagation scenario.) In both cases, the
target matching distribution is χ2(n), where n is the dimension of the orbital state space. For sake of example,
we take n = 6. We define the m bins so that the expected number of observations ej is k/m for all j. Let
b(i) ∈ {1, . . . ,m} denote the bin number in which each observation x(i) belongs. By virtue of the choice of the
expected frequencies ej , these bin numbers can be determined from the cumulative distribution function (CDF)
of the matching distribution. For a χ2(6) matching distribution, its CDF enjoys a particularly simple form:

F (x) =

{
1− 1

8e−x/2(x2 + 4x+ 8), x > 0,
0, otherwise.

(8)

It follows that
b(i) = dmF (x(i))e,

for i = 1, . . . , k. The number of observations contained in each bin can be readily determined as follows: (i)
initialize oj = 0, for j = 1, . . . ,m, and (ii) for i = 1, . . . , k, do ob(i) ← ob(i) + 1. Finally, we compute the
normalized Pearson test statistic:

Pχ =
1

m− 1

m∑
j=1

(oj − ej)2

ej
=

1

m− 1

m∑
j=1

(oj − k/m)2

k/m
.

Given a significance level α (typically 0.01 or 0.001), we can derive a one-sided 100(1− α)% confidence interval
for the distribution χ2(m− 1)/(m− 1) given by [0, χ2(m− 1; 1− α)/(m− 1)], where χ2(m− 1;β) is the 100β%
quantile of the distribution χ2(m − 1). One rejects the null hypothesis that the observed samples x(i) belong
to a χ2(6) distribution if the normalized Pearson test statistic Pχ computed above falls outside this confidence
interval.

2.4.2 Empirical Distribution Function (EDF) Tests

The simplicity and flexibility of the Pearson GOF test make it quite appealing, but it unfortunately harbors
considerable disadvantages as well. The first is a relative lack of power when used to test against continuous
distributions. Discretizing a continuous distribution by dividing it up into individual cells eliminates some
of the distribution’s information; techniques that can preserve continuity will generally render more powerful
results. The second is an inherent arbitrariness introduced by the number of cells selected. Certain studies
have shown that the test is more powerful when performed with cells sized so as to be equiprobable (as detailed
in Subsection 2.4.1), and cell quantities optimized for the use of the test against a hypothesized Gaussian
distribution can be recommended.24 However, there is no set of such recommendations for the general case,
with both the test outcomes and the resulting statistical inference affected by different bin quantities and sizes.
Given these problems, it is typically best to select other GOF approaches unless one is performing tests against
a hypothesized distribution that is natively discrete.

The leading alternative candidate for this type of GOF testing is the family of tests based on the empirical
distribution function (EDF) of the sample data and the hypothesized distribution. The basic idea here is to
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Figure 3. Depiction of the Kolmogorov-Smirnov test. The test statistic, up to a normalization in the sample size k, is the
largest deviation between the hypothesized CDF F (x) and the empirical CDF Fk(x), as indicated by the black arrow.

(i) calculate the differences between a cumulative distribution function (CDF) for the hypothesized distribution
and an empirical CDF (ECDF) for the sample distribution; (ii) encapsulate these differences in terms of a GOF
test statistic; and (iii) determine the likelihood, by the use of published p-value tables, that the sample actually
could have the hypothesized distribution as a parent. Constructing the CDF for the hypothesized distribution
and the ECDF for the sample distribution is straightforward enough; plotting them on the same graph can
reveal the differences visually. At this point, there are two different approaches to determining the overall
amount of deviation. The supremum approach is to catalog the largest deviation between the hypothesized and
empirical result and examine the p-value associated with this large a deviation; this approach is the basis of the
Kolmogorov-Smirnov test.

In Figure 3, the hypothesized distribution’s CDF F (x) is given in red and the ECDF Fk(x) for the sample
is shown in blue. The x-axis is the actual function value, and the y-axis is the cumulative probability. The
largest deviation between the hypothesized and empirical CDF is indicated by the arrow. In applying the
Kolmogorov-Smirnov test, one computes this deviation and adjusts it for the sample size k:

Dk =
√
k sup

x
|Fk(x)− F (x)|.

One then compares the Kolmogorov-Smirnov test statistic Dk to a table of p-values in order to determine the
likelihood that the sample set could have originated from the hypothesized distribution. The formulation of the
hypothesis test here is somewhat unusual in that the null hypothesis is that the two distributions (hypothesized
and sample) are in fact the same, and this hypothesis is rejected for low p-values. This approach is called “weak-
hypothesis testing” and is occasionally criticized for being too permissive. Note that it must be remembered that
the purpose here is not to identify the true underlying distribution, only to determine whether the hypothesized
distribution is a reasonable candidate for a parent distribution of the sample. P -values from 0.1–1% are typically
used as the rejection threshold in GOF testing. It is the authors’ experience that at this significance level,
mismatched distributions are clearly rejected, even with small sample sizes.

The second strain of EDF GOF test approaches are the quadratic statistics. These approaches sum up all of
the deviations and use this sum as the test statistic. The canonical summation equation is the following:

Qk = k

∫ ∞
−∞

[
Fk(x)− F (x)

]2
ψ(F (x)) dF (x). (9)



The weighting factor ψ(F (x)) is typically either set to unity to produce the Cramér-von Mises statistic or to a
function that will give more weight to the tails, such as ψ(F (x)) = 1/[F (x)(1−F (x))], to produce the Anderson-
Darling statistic. Testing proceeds in the same way as that described for the Kolgomorov-Smirnov test. The
test statistic Qk is calculated, and tables of p-values are consulted to determine the significance level for the
test statistic indicated. A good source for these tables is the monograph of D’Agostino and Stephens12 on this
subject. Tables exist for all of the major distributions (e.g., normal, gamma, chi-squared, von Mises), both as
fully-specified distributions (“Case 0”) and as distributions in which distribution parameters are represented by
estimators (“Cases 1-3”).

With regards to assessing uncertainty realism using an EDF test in the context of the example of Subsec-
tion 2.3.1, we recommend using a GOF test based on a quadratic statistic rather than the Kolmogorov-Smirnov
test. The latter is generally considered less powerful than quadratic tests because it considers only one value
(i.e., the largest deviation). Of the two quadratic tests reviewed here, we recommend the Cramér-von Mises
test over the Anderson-Darling test because the latter, though usually considered more powerful, is more fragile
due to sensitivity of the test on the tails. Specializing (9) to ψ(F (x)) = 1, the resulting Cramér-von Mises test
statistic is‡‡

Qk =
1

12k
+

k∑
i=1

[
2i− 1

2k
− F (x(i))

]2

, (10)

where the x(i), i = 1, . . . , k, are the observed samples in increasing order. Table 2 in the appendix provides
one-sided confidence intervals for the Cramér-von Mises test statistic (10) for common significance levels and
sample sizes k.

2.5 Other Distribution Matching Tests

There are a number of additional GOF testing approaches that are common in modern engineering practice that
were not pursued here, for reasons of both suitability and convenience. The Akaike Information Criterion26 is
an entropy-based approach that has achieved currency for model adequacy assessment. While in some ways it is
more powerful than traditional hypothesis testing, its chief drawback is that it can serve only as a comparative
test to evaluate the relative performance of two or more models; it cannot give an absolute evaluation, in a
p-value sense, of the conformity of the data to any single hypothesized distribution. Regression/correlation GOF
tests, such as the well-known Shapiro-Wilk test,27 and moment-based tests, such as the combination third-fourth
moment test,28 are very much legitimate GOF tests that often can confer substantial power. However, the ability
to deploy them requires certain a priori products: for regression tests, it is a set of data weighting coefficients
appropriate to the hypothesized distribution; and for moment-based tests, it is the null distributions of those
moments for the hypothesized distribution. The present authors were not able to locate published sources for
these a priori products for the chi-squared distribution, which is one of the principal hypothesized distributions
to be tested for the present application. While it may be possible to establish these a priori products through
private Monte-Carlo studies, this was seen as unnecessary labor when other GOF tests – equally powerful –
already exist with the deployment products necessary for the testing of all of the hypothesized distributions
presently considered. For this reason, the present collection of GOF test was limited to the traditional Pearson
test and the mainstream EDF tests (Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling).

3. EXAMPLES

We now provide an example that tests uncertainty realism in the context of the uncertainty propagation scenario
described in Section 2.3.1 and examines the power and effectiveness of the averaged uncertainty realism test, the
Pearson goodness-of-fit (GOF) test, and the Cramér-von Mises test. With additional details in the companion
paper,3 the high-level setup for these tests is as follows. The initial orbital state at epoch describes a high
accuracy low Earth orbit (LEO) object; its uncertainty is taken to be Gaussian in the osculating equinoctial
orbital element coordinate system. The LEO object state and covariance are propagated using the prediction step
of the unscented Kalman filter29 (UKF); individual sigma points in the UKF are propagated using an implicit
Runge-Kutta-based method30,31 in conjunction with a 32 × 32 gravity model and lunar-solar perturbations. A

‡‡A detailed explanation of the derivation of (10) from (9) can be found in the monograph of Darling.25
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(a) Averaged uncertainty realism test (b) Pearson goodness-of-fit test (c) Cramér-von Mises test

Figure 4. Application of the (a) averaged uncertainty realism test, (b) Pearson goodness-of-fit test, and (c) Cramér-
von Mises test to an uncertainty propagation scenario in space surveillance. The coordinate system in which the state
and covariance are represented is Cartesian position-velocity coordinates (red), osculating equinoctial orbital elements
(green), or J2 equinoctial orbital elements (blue). The 99.9% confidence region is shown in the shaded area. The less-
powerful tests in (a) and (b) suggest that uncertainty realism does not break down in osculating element space (green)
over the entire duration of propagation, whereas the more-powerful Cramér-von Mises test (c) indicates a breakdown after
about 90 orbital periods of propagation.

total of 1000 Monte-Carlo trials are used; 10 (equiprobable) bins are defined when applying the Pearson test.
Three variations of the scenario are considered which differ only by the choice of coordinate system used to the
represent the state and covariance. These coordinate systems are (i) osculating equinoctial orbital elements,
(ii) Cartesian position-velocity coordinates, and (iii) J2 equinoctial orbital elements. For scenarios that use the
latter two coordinate systems, the initial state and covariance (defined in the osculating elements as described
above) are converted to (and approximated by) a Gaussian in the target coordinate system using the unscented
transform∗.

Figure 4 presents the results of the uncertainty realism tests outlined above. All tests show that uncertainty
realism breaks down the fastest when the uncertainty is represented in Cartesian coordinates (see the red curves).
This is not surprising since the non-linearity in the dynamics is the greatest in these coordinates, and non-linearity
implies that the initial Gaussian density quickly becomes non-Gaussian. In contrast, the osculating equinoctial
orbital elements absorb the most dominant term in the non-linear dynamics (i.e., the 1/r2 term in the gravity)
while, in addition, the J2 equinoctial elements absorb the J2 perturbation in the gravity.3 As such, representing
uncertainty in one of these orbital element systems mitigates the departure from “Gaussianity,” “extends the
life” of the UKF, and preserves uncertainty realism longer. The results inferred from the averaged uncertainty
realism metric in Figure 4(a) are deceptive for the osculating equinoctial case (green curve) and suggest that
uncertainty realism is maintained over the entire duration of propagation (since the test statistic fails to pierce
the 99.9% confidence interval). The application of the Pearson GOF test in Figure 4(b), a more powerful test
for uncertainty realism, suggests that a breakdown is imminent (in the osculating element case), though the
Pearson test statistic is still within the 99.9% confidence interval. On the other hand, the Cramér-von Mises test
statistic, plotted in Figure 4(c), confirms a potential breakdown in uncertainty realism after about 90 orbital
periods. By using the J2 variant of the equinoctial elements to represent uncertainty (blue curve), the Cramér-
von Mises test statistic is nearly constant over the entire duration of propagation which strongly suggests that the
uncertainty remains Gaussian in such coordinates and its uncertainty (and covariance) realism does not degrade.
We also remark that the Cramér-von Mises test tends to produce a smoother (less noisy) test statistic when
comparing panels (b) and (c) of Figure 4 due in part to the test’s power, robustness, and the fact that it is “bin
agnostic.” Clearly, this example shows that first-moment tests such as the averaged uncertainty realism test are
not recommended since they have very little determinative power. Pearson’s test statistic is an improvement,
but it is not to be preferred over the more fungible and powerful Cramér-von Mises test.

∗The initial state uncertainty is well-approximated by a single Gaussian in all three coordinate systems, as evidenced
in Figure 4, since the averaged uncertainty realism metric, Pearson test statistic, and Cramér-von Mises test statistic are
(approximately) equal at the initial epoch and well within their respective 99.9% confidence intervals.



In the companion paper, we perform a more thorough study of the test described above using a broader range
of initial conditions. Additional methods for non-linear filtering are also evaluated, namely, the prediction steps
of the extended Kalman and Gauss von Mises filters,3,13,14 as are different coordinate systems for representing
uncertainty.

4. RECOMMENDATIONS AND CONCLUSIONS

This paper has defined a series of metrics and statistical tests to assess covariance realism (and more general
uncertainty realism) during propagation of space object state uncertainty and to enable quantitative compar-
isons between different approaches. Chief among the metrics is a new metric that generalizes the traditional
Mahalanobis distance used in covariance realism tests to non-Gaussian distributions and possesses an analogous
chi-squared property of the resulting test statistic.

In scenarios involving real data with truth on a single object (i.e., a high accuracy orbit) or in off-line
simulations with only a few Monte-Carlo trials (between 1 and 10) in which there are insufficient number of
samples to perform a more powerful goodness-of-fit (GOF) or distribution matching test, we recommend using
the averaged uncertainty realism metric. The use of such a metric provides a necessary condition for uncertainty
realism based on the chi-squared property of the computed test statistic.

In scenarios involving real data with truth on multiple objects or in off-line simulations amenable to a
large number of Monte-Carlo trials (at least 10), the use of first-moment tests (such as the one based on the
averaged uncertainty realism metric) are not recommended due to their limited determinative power. In fact,
the application of such tests can lead to deceptive results as demonstrated in Section 3. Instead, the Cramér-von
Mises test is recommended over the Pearson GOF test or the related Anderson-Darling test because the former
tends to be more robust and less sensitive to observations in the tails of the distribution and the number of
samples used in the test.
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APPENDIX

For applications of the averaged uncertainty realism test described in Section 2.3, Table 1 provides two-sided
confidence intervals for the corresponding test statistic Ū given by Equation (6). For applications of the Cramér-
von Mises goodness-of-fit test described in Section 2.4.2, Table 2 provides one-sided confidence intervals for the
test statistic Qk given by Equation (10). The confidence intervals in Table 2 were extracted from the manuscript
of Csörgö and Faraway.32

Table 1. Two-sided confidence intervals for the test statistic Ū ∼ χ2(nk)/(nk), used in the averaged uncertainty realism
test in Section 2.3, for common significance levels, state space dimensions n, and sample sizes k.

Two-Sided Confidence Interval for Ū ∼ χ2(nk)/(nk)
(n, k) 90% 95% 99% 99.9%

(6, 100) [0.906967, 1.096823] [0.890031, 1.116282] [0.857548, 1.154969] [0.820868, 1.200960]
(7, 100) [0.913733, 1.089515] [0.897967, 1.107444] [0.867685, 1.143045] [0.833416, 1.185295]
(8, 100) [0.919203, 1.083639] [0.904391, 1.100344] [0.875906, 1.133483] [0.843616, 1.172757]
(6, 1000) [0.970160, 1.030219] [0.964533, 1.036099] [0.953598, 1.047654] [0.941013, 1.061171]
(7, 1000) [0.972360, 1.027965] [0.967142, 1.033399] [0.956997, 1.044076] [0.945314, 1.056558]
(8, 1000) [0.974135, 1.026149] [0.969248, 1.031226] [0.959742, 1.041197] [0.948790, 1.052848]
(6, 10000) [0.990522, 1.009515] [0.988716, 1.011347] [0.985191, 1.014934] [0.981111, 1.019107]
(7, 10000) [0.991224, 1.008808] [0.989551, 1.010503] [0.986285, 1.013822] [0.982505, 1.017682]
(8, 10000) [0.991790, 1.008238] [0.990224, 1.009823] [0.987168, 1.012926] [0.983629, 1.016535]

Table 2. One-sided confidence intervals for the Cramér-von Mises test statistic (10) for common significance levels and
sample sizes k.

One-Sided Confidence Interval for the Cramér-von Mises test statistic
k 90% 95% 99% 99.9%

10 [0.008333, 0.34510] [0.008333, 0.45441] [0.008333, 0.71531] [0.008333, 1.07428]
20 [0.004167, 0.34617] [0.004167, 0.45778] [0.004167, 0.72895] [0.004167, 1.11898]
50 [0.001667, 0.34682] [0.001667, 0.45986] [0.001667, 0.73728] [0.001667, 1.14507]
200 [0.000417, 0.34715] [0.000417, 0.46091] [0.000417, 0.74149] [0.000417, 1.15783]
1000 [0.000083, 0.34724] [0.000083, 0.46119] [0.000083, 0.74262] [0.000083, 1.16120]
∞ [0, 0.34730] [0, 0.46136] [0, 0.74346] [0, 1.16204]


